Answer:
42 Kids
Step-by-step explanation:
1st you have to subtract 7 form 301 so you get 294
2nd you divide 294 by 7 294/7
And you should get an answer of 42 Kids
Answer:
Interior Angle: 165°
Exterior Angle: 15°
Step-by-step explanation:
So first you have to find the sum of all interior angles of a polygon with <u>24 sides</u>. This can be found using the formula:
sum = ( <em>n</em> - 2 ) * 180° where '<em>n</em>' is the number of sides.
When '<em>n</em> = 24' then the sum is:
sum = ( 24 - 2 ) * 180°
Simplify and solve.
sum = 22 * 180°
sum = 3960°
Since there are 24 sides to the polygon, there are 24 interior angles. <u>Assuming that this polygon is equilateral</u>, you can surmise that:
<em>Interior Angle</em> = sum° / <em>n</em> where n is the number of sides,
3960° / 24 = 165° = Interior Angle
Using that information, and combine it with the [Supplementary Angles Theorem] the exterior angle can be found by:
165° + x = 180°
Solve for x.
1+1+1+1+1+5+5+5+5 is one
5+5+5+1+1+1+1+1+1+1+1+1+1 is another
5+5+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1 is three
5+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1 is four.
There are 4 combinations.
Answer:
d<u>></u>-7
Step-by-step explanation:
Answer:
P_max = 9.032 KN
Step-by-step explanation:
Given:
- Bar width and each side of bracket w = 70 mm
- Bar thickness and each side of bracket t = 20 mm
- Pin diameter d = 10 mm
- Average allowable bearing stress of (Bar and Bracket) T = 120 MPa
- Average allowable shear stress of pin S = 115 MPa
Find:
The maximum force P that the structure can support.
Solution:
- Bearing Stress in bar:
T = P / A
P = T*A
P = (120) * (0.07*0.02)
P = 168 KN
- Shear stress in pin:
S = P / A
P = S*A
P = (115)*pi*(0.01)^2 / 4
P = 9.032 KN
- Bearing Stress in each bracket:
T = P / 2*A
P = T*A*2
P = 2*(120) * (0.07*0.02)
P = 336 KN
- The maximum force P that this structure can support:
P_max = min (168 , 9.032 , 336)
P_max = 9.032 KN