Answer:
<h2>y = 54 ✅</h2>
Step-by-step explanation:
If the two numbers vary directly, we can use a proportion to find the missing value.
36/4 = y/6
4y = 216
Divide by 4
y = 54
Check
36/4 = 54/6
216 = 216 ✅
Answer:
5) 64
3) a loaf of bread
6) 2
4) see saw
Step-by-step explanation:
since the diameter of the base of the cylinder is 6 feet, then its radius is half that, or 3 feet.
![\bf \textit{volume of a cylinder}\\\\ V=\pi r^2 h~~ \begin{cases} r=radius\\ h=height\\[-0.5em] \hrulefill\\ r=3\\ h=9 \end{cases}\implies V=\pi (3)^2(9)\implies V=81\pi](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bvolume%20of%20a%20cylinder%7D%5C%5C%5C%5C%0AV%3D%5Cpi%20r%5E2%20h~~%0A%5Cbegin%7Bcases%7D%0Ar%3Dradius%5C%5C%0Ah%3Dheight%5C%5C%5B-0.5em%5D%0A%5Chrulefill%5C%5C%0Ar%3D3%5C%5C%0Ah%3D9%0A%5Cend%7Bcases%7D%5Cimplies%20V%3D%5Cpi%20%283%29%5E2%289%29%5Cimplies%20V%3D81%5Cpi)
Answer:
The correct answer is b.
Step-by-step explanation:
The wave equation is given generally as:
c(x, t) = Acos(kx - wt)
Where A = amplitude
k = wave number
w = angular frequency.
x = horizontal distance moves by the wave.
t = time
The options show to us that the wave depends only on t and not (x, t).
Hence, the wave equation becomes:
c(t) = Acos(wt)
Given that:
A = 5 V
f = 1 * 10⁶ Hz
Angular Frequency, w, is given as:
w = 2πf
w = 2 * π * 1 * 10⁶ Hz
w = 2π(1 * 10⁶)
The wave equation becomes:
c(t) = 5cos(2*π*1*10⁶)
The correct answer is b.
Answer:
Dilation
Step-by-step explanation: im doing this in k-12 in math now