Answer:
don't know how to answer that lol
Step-by-step explanation:
Hi there! :)
Answer:
Length = 10.5 m, width = 7 m.
Step-by-step explanation:
Given:
Perimeter, or P = 35 m
Ratio of l to w = 3 : 2
Since the ratio is 3 : 2, let l = 3x, and w = 2x.
We know that the formula for the perimeter of a rectangle is P = 2l + 2w. Therefore:
35 = 2(3x) + 2(2x)
35 = 6x + 4x
35 = 10x
x = 3.5
Plug this value of "x" into each expression to solve for the dimensions:
2(3.5) = w
w = 7 m
3(3.5) = l
l = 10.5 m
Therefore, the dimensions are:
Length = 10.5 m, width = 7 m.
Similar steps:
1. You need to draw a reference line first( It's trivial but hey, it's similar)
2. You need to draw the other line with pre-defined slope( parallel with same slope, perpendicular with the product of the slope to be -1)
Answer:
We want to find:
![\lim_{n \to \infty} \frac{\sqrt[n]{n!} }{n}](https://tex.z-dn.net/?f=%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%5Cfrac%7B%5Csqrt%5Bn%5D%7Bn%21%7D%20%7D%7Bn%7D)
Here we can use Stirling's approximation, which says that for large values of n, we get:

Because here we are taking the limit when n tends to infinity, we can use this approximation.
Then we get.
![\lim_{n \to \infty} \frac{\sqrt[n]{n!} }{n} = \lim_{n \to \infty} \frac{\sqrt[n]{\sqrt{2*\pi*n} *(\frac{n}{e} )^n} }{n} = \lim_{n \to \infty} \frac{n}{e*n} *\sqrt[2*n]{2*\pi*n}](https://tex.z-dn.net/?f=%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%5Cfrac%7B%5Csqrt%5Bn%5D%7Bn%21%7D%20%7D%7Bn%7D%20%3D%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%5Cfrac%7B%5Csqrt%5Bn%5D%7B%5Csqrt%7B2%2A%5Cpi%2An%7D%20%2A%28%5Cfrac%7Bn%7D%7Be%7D%20%29%5En%7D%20%7D%7Bn%7D%20%3D%20%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%5Cfrac%7Bn%7D%7Be%2An%7D%20%2A%5Csqrt%5B2%2An%5D%7B2%2A%5Cpi%2An%7D)
Now we can just simplify this, so we get:
![\lim_{n \to \infty} \frac{1}{e} *\sqrt[2*n]{2*\pi*n} \\](https://tex.z-dn.net/?f=%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%5Cfrac%7B1%7D%7Be%7D%20%2A%5Csqrt%5B2%2An%5D%7B2%2A%5Cpi%2An%7D%20%5C%5C)
And we can rewrite it as:

The important part here is the exponent, as n tends to infinite, the exponent tends to zero.
Thus:
