Answer: 50 %
Step-by-step explanation: 4/8 is 50% and 1/2 is 50% so it is a 50% chance
Answer:
The equivalent expression for |b| > 2 is {b : b < -2} ∪ {b : b > 2}.
Step-by-step explanation:
The expression |x| < a is equivalent to -a < x < a and the expression |x| > a is equivalent to {x : x < -a} ∪ {x : x > a}.
This means, the set of all points that satisfy the inequality |x| < a is the set of all points between -a and a exclusive of -a and a.
The set of all points that satisfy the inequality |x| > a is the set of all points that are less than -a and the set of all points that are greater than a.
Hence, the equivalent expression for |b| > 2 is {b : b < -2} ∪ {b : b > 2}.
Answer:
Step-by-step explanation:
Given
On first day bag contained 1 kernels
on second bag contained 2 kernels of corn
on third day bag contained 4 kernels of corn
on n th day bag contains
kernels of corn
thus on 26 th day bag contains
kernel
Each kernel weigh 0.07 gm
Therefore
kernels weighs 
Therefore on 26 th day
kernel weighs 23,488.1024 kg
Answer:
Using the table, give the percentage associated with each unit of standard deviation in the standard normal curve to the
nearest hundredth.
х
Area, A(x) x
Area, A(x)
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
0.0793
0.1554
0.2257
0.2881
0.3413
0.3849
0.4192
0.4452
0.4641
0.4772
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
0.4861
0.4918
0.4953
0.4974
0.4987
0.4993
0.4997
0.4998
0.4999
0.5000
Standard Deviation Percentage Area
-1 to 0
81.85 %
O to +1
34.13 %
Step-by-step explanation:
Using the table, give the percentage associated with each unit of standard deviation in the standard normal curve to the
nearest hundredth.
х
Area, A(x) x
Area, A(x)
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
0.0793
0.1554
0.2257
0.2881
0.3413
0.3849
0.4192
0.4452
0.4641
0.4772
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
0.4861
0.4918
0.4953
0.4974
0.4987
0.4993
0.4997
0.4998
0.4999
0.5000
Standard Deviation Percentage Area
-1 to 0
81.85 %
O to +1
34.13 %
Using the table, give the percentage associated with each unit of standard deviation in the standard normal curve to the
nearest hundredth.
х
Area, A(x) x
Area, A(x)
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
0.0793
0.1554
0.2257
0.2881
0.3413
0.3849
0.4192
0.4452
0.4641
0.4772
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
0.4861
0.4918
0.4953
0.4974
0.4987
0.4993
0.4997
0.4998
0.4999
0.5000
Standard Deviation Percentage Area
-1 to 0
81.85 %
O to +1
34.13 %