Answer:
Bet
Step-by-step explanation:
It’s a simple one to write. There are many trios of integers (x,y,z) that satisfy x²+y²=z². These are known as the Pythagorean Triples, like (3,4,5) and (5,12,13). Now, do any trios (x,y,z) satisfy x³+y³=z³? The answer is no, and that’s Fermat’s Last Theorem.
On the surface, it seems easy. Can you think of the integers for x, y, and z so that x³+y³+z³=8? Sure. One answer is x = 1, y = -1, and z = 2. But what about the integers for x, y, and z so that x³+y³+z³=42?
That turned out to be much harder—as in, no one was able to solve for those integers for 65 years until a supercomputer finally came up with the solution to 42. (For the record: x = -80538738812075974, y = 80435758145817515, and z = 12602123297335631. Obviously.)
Answer:
Rains and Splash
Step-by-step explanation:
2 verbs rains and splash
<span>V = 1/3(3.14)r^2h
=1.046r^2h
Solving for V </span>
If f(x) has an inverse on [a, b], then integrating by parts (take u = f(x) and dv = dx), we can show

Let
. Compute the inverse:
![f\left(f^{-1}(x)\right) = \sqrt{1 + f^{-1}(x)^3} = x \implies f^{-1}(x) = \sqrt[3]{x^2-1}](https://tex.z-dn.net/?f=f%5Cleft%28f%5E%7B-1%7D%28x%29%5Cright%29%20%3D%20%5Csqrt%7B1%20%2B%20f%5E%7B-1%7D%28x%29%5E3%7D%20%3D%20x%20%5Cimplies%20f%5E%7B-1%7D%28x%29%20%3D%20%5Csqrt%5B3%5D%7Bx%5E2-1%7D)
and we immediately notice that
.
So, we can write the given integral as

Splitting up terms and replacing
in the first integral, we get

Answer:
5.6x+1.4
Step-by-step explanation:
(-3.5x+1.7)+(9.1x-0.3)=-3.5x+9.1x+1.7-0.3=5.6x+1.4