1. find center
2. (0,6) is 6 away from center
3. find the equation of the ellipse
To find the slope of the line, use the rise over run formula:

Take any two points from the line and plug them into the formula.
(0,0) and (10, 5)

The slope of the line is 0.5.
Using the form y = mx, the following equation will be your answer:
if the diameter is 26 yards, then its radius is half that, or 13 yards.
![\bf \textit{circumference of a circle}\\\\ C=2\pi r~~ \begin{cases} r=radius\\[-0.5em] \hrulefill\\ r=13 \end{cases}\implies C=2\pi (13)\implies C=26\pi \implies C\approx 81.68 \\\\[-0.35em] ~\dotfill\\\\ \textit{area of a circle}\\\\ A=\pi r^2~~ \begin{cases} r=radius\\[-0.5em] \hrulefill\\ r=13 \end{cases}\implies A=\pi (13)^2\implies A=169\pi \implies A\approx 530.93](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bcircumference%20of%20a%20circle%7D%5C%5C%5C%5C%20C%3D2%5Cpi%20r~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20r%3D13%20%5Cend%7Bcases%7D%5Cimplies%20C%3D2%5Cpi%20%2813%29%5Cimplies%20C%3D26%5Cpi%20%5Cimplies%20C%5Capprox%2081.68%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Ctextit%7Barea%20of%20a%20circle%7D%5C%5C%5C%5C%20A%3D%5Cpi%20r%5E2~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20r%3D13%20%5Cend%7Bcases%7D%5Cimplies%20A%3D%5Cpi%20%2813%29%5E2%5Cimplies%20A%3D169%5Cpi%20%5Cimplies%20A%5Capprox%20530.93)
If BI bisects angle HEJ then x=47
Answer:
its 2
Step-by-step explanation: