Answer:910
Step-by-step explanation: it rounds up because if the last number is more than 5 you round up
<span>(10^-3L/1mL)^3 is the correct answer.</span>
Answer:
1300
Step-by-step explanation:
Given that :
Number of sections = 8
Number of seats per section, x ;
150 ≤ x ≤ 200
The possible Number of seats in the auditorium :
Number of seats per section * number of sections
150 * 8 ≤ x ≤ 200 * 8
1200 ≤ x ≤ 1600
The possible Number of seats will lie within 1200 and 1600
From the options, only 1300 lie within this range
Rolle's Theorem does not apply to the function because there are points on the interval (a,b) where f is not differentiable.
Given the function is
and the Rolle's Theorem does not apply to the function.
Rolle's theorem is used to determine if a function is continuous and also differentiable.
The condition for Rolle's theorem to be true as:
- f(a)=f(b)
- f(x) must be continuous in [a,b].
- f(x) must be differentiable in (a,b).
To apply the Rolle’s Theorem we need to have function that is differentiable on the given open interval.
If we look closely at the given function we can see that the first derivative of the given function is:
![\begin{aligned}f(x)&=\sqrt{(2-x^{\frac{2}{3}})^3}\\ f(x)&=(2-x^{\frac{2}{3}})^{\frac{3}{2}}\\ f'(x)&=\frac{3}{2}(2-x^{\frac{2}{3}})^{\frac{1}{2}}\cdot \frac{2}{3}\cdot (-x)^{\frac{1}{3}}\\ f'(x)&=\frac{-\sqrt{2-x^{\frac{2}{3}}}}{\sqrt[3]{x}}\end](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7Df%28x%29%26%3D%5Csqrt%7B%282-x%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%29%5E3%7D%5C%5C%20f%28x%29%26%3D%282-x%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%29%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%5C%5C%20f%27%28x%29%26%3D%5Cfrac%7B3%7D%7B2%7D%282-x%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%29%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%5Ccdot%20%5Cfrac%7B2%7D%7B3%7D%5Ccdot%20%28-x%29%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%5C%5C%20f%27%28x%29%26%3D%5Cfrac%7B-%5Csqrt%7B2-x%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%7D%7D%7B%5Csqrt%5B3%5D%7Bx%7D%7D%5Cend)
From this point of view we can see that the given function is not defined for x=0.
Hence, all the assumptions are not satisfied we can reach a conclusion that we cannot apply the Rolle's Theorem.
Learn more about Rolle's Theorem from here brainly.com/question/12279222
#SPJ4
Step-by-step explanation:
number 1 is 68 degrees Fahrenheit and number 2 is 98.6=37 degrees Celsius and 102 fahrenheit is higher than the normal