<span>Given: Rectangle ABCD
Prove: ∆ABD≅∆CBD
Solution:
<span> Statement Reason
</span>
ABCD is a parallelogram Rectangles are parallelograms since the definition of a parallelogram is a quadrilateral with two pairs of parallel sides.
Segment AD = Segment BC The opposite sides of a parallelogram are Segment AB = Segment CD congruent. This is a theorem about the parallelograms.
</span>∆ABD≅∆CBD SSS postulate: three sides of ΔABD is equal to the three sides of ∆CBD<span>
</span><span>Given: Rectangle ABCD
Prove: ∆ABC≅∆ADC
</span>Solution:
<span> Statement Reason
</span>
Angle A and Angle C Definition of a rectangle: A quadrilateral
are right angles with four right angles.
Angle A = Angle C Since both are right angles, they are congruent
Segment AB = Segment DC The opposite sides of a parallelogram are Segment AD = Segment BC congruent. This is a theorem about the parallelograms.
∆ABC≅∆ADC SAS postulate: two sides and included angle of ΔABC is congruent to the two sides and included angle of ∆CBD
Answer:
the x terms
Step-by-step explanation:
there is a +x and a -x.
x-x=0,
x will cancel out
-182=2(1+2x)-2
2*1=2
2*2x=4x
-182=4x+2-2
-182=4x
-45.5=x
Answer:
11
Step-by-step explanation:
Answer:He remained in the craft fair for 7 hours
Step-by-step explanation: