1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Genrish500 [490]
3 years ago
7

Solve the equation A = 2LW + 2LH + 2WH for H.

Mathematics
1 answer:
Fed [463]3 years ago
6 0
H = A - 2LW / 2 (L+W)
You might be interested in
What are the domain and range of the function
____ [38]

Answer:

Step-by-step explanation:

I don't say u must have to mark my ans as brainliest but if it has really helped u plz don't forget to thank me my frnd..

8 0
3 years ago
Read 2 more answers
If 5 + 20 times 2 Superscript 2 minus 3 x Baseline = 10 times 2 Superscript negative 2 x Baseline + 5, what is the value of x? –
sp2606 [1]

Answer:

<h3>Option D) 3 is correct</h3><h3>Therefore the value of x is 3</h3>

Step-by-step explanation:

Given equation is 5+20\times (2)^{2-3x}=10\times (2)^{-2x}+5

<h3>To find the value of x :</h3>

First solving the given equation we have,

5+20\times (2)^{2-3x}=10\times (2)^{-2x}+5

5+20\times (2)^{2-3x}-5=10\times (2)^{-2x}+5-5

20\times (2)^{2-3x}=10\times (2)^{-2x}

20\times (2)^2.(2)^{-3x}=10\times (2)^{-2x}

20\times 4.(2)^{-3x}=10\times (2)^{-2x}

80(2)^{-3x}=10\times (2)^{-2x}

\frac{80}{10}(2)^{-3x}=\frac{10\times (2)^{-2x}}{10}

8(2)^{-3x}=(2)^{-2x}

\frac{(2)^{-3x}}{(2)^{-2x}}=\frac{1}{8}

(2)^{-3x}.(2)^{2x}=\frac{1}{2^3} ( by using the property \frac{1}{a^{-m}}=a^m )

2^{-3x+2x}=\frac{1}{2^3} ( by using the property a^m.a^n=a^{m+n} )

2^{-x}=\frac{1}{2^3}

\frac{1}{2^x}=\frac{1}{2^3} ( by using the property a^{-m}=\frac{1}{a^m} )

Since bases are same so powers are same

Therefore we can equate the powers we get x=3

<h3>Therefore the value of x is 3</h3><h3>Option D) 3 is correct</h3>
5 0
3 years ago
Read 2 more answers
What doubles fact can I write to solve 4+5
GenaCL600 [577]
5+4❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤
5 0
3 years ago
A laboratory scale is known to have a standard deviation (sigma) or 0.001 g in repeated weighings. Scale readings in repeated we
weqwewe [10]

Answer:

99% confidence interval for the given specimen is [3.4125 , 3.4155].

Step-by-step explanation:

We are given that a laboratory scale is known to have a standard deviation (sigma) or 0.001 g in repeated weighing. Scale readings in repeated weighing are Normally distributed with mean equal to the true weight of the specimen.

Three weighing of a specimen on this scale give 3.412, 3.416, and 3.414 g.

Firstly, the pivotal quantity for 99% confidence interval for the true mean specimen is given by;

        P.Q. = \frac{\bar X - \mu}{\frac{\sigma}{\sqrt{n} } } ~ N(0,1)

where, \bar X = sample mean weighing of specimen = \frac{3.412+3.416+3.414}{3} = 3.414 g

            \sigma = population standard deviation = 0.001 g

            n = sample of specimen = 3

            \mu = population mean

<em>Here for constructing 99% confidence interval we have used z statistics because we know about population standard deviation (sigma).</em>

So, 99% confidence interval for the population​ mean, \mu is ;

P(-2.5758 < N(0,1) < 2.5758) = 0.99  {As the critical value of z at 0.5% level

                                                            of significance are -2.5758 & 2.5758}

P(-2.5758 < \frac{\bar X - \mu}{\frac{\sigma}{\sqrt{n} } } < 2.5758) = 0.99

P( -2.5758 \times {\frac{\sigma}{\sqrt{n} } } < {\bar X - \mu} < 2.5758 \times {\frac{\sigma}{\sqrt{n} } } ) = 0.99

P( \bar X-2.5758 \times {\frac{\sigma}{\sqrt{n} } } < \mu < \bar X+2.5758 \times {\frac{\sigma}{\sqrt{n} } } ) = 0.99

<u>99% confidence interval for</u> \mu = [ \bar X-2.5758 \times {\frac{\sigma}{\sqrt{n} } } , \bar X+2.5758 \times {\frac{\sigma}{\sqrt{n} } } ]

                                             = [ 3.414-2.5758 \times {\frac{0.001}{\sqrt{3} } } , 3.414+2.5758 \times {\frac{0.001}{\sqrt{3} } } ]

                                             = [3.4125 , 3.4155]

Therefore, 99% confidence interval for this specimen is [3.4125 , 3.4155].

6 0
3 years ago
Can a triangle have angle measures as 140,43, and 7
Mariulka [41]

The angles in a triangle always add up to exactly 180 degrees.  To see if this can be a triangle, add up the given angle measures.  If the sum is not 180, then it cannot be a triangle.

140+43+7=190

A triangle CANNOT have the angles measures as 140, 43, and 7.

Hope this helps!!

3 0
3 years ago
Other questions:
  • Find the standard equation of a parabola with a vertex of (-3,1)
    8·1 answer
  • What is the slope of the line?
    10·1 answer
  • Solve the equation for z^3-z^2-12z=0<br><br> The solutions are z=?, z=?, and z=?
    15·1 answer
  • Please help as soon as possible <br>I WILL MARK YOU AS BRAINLIEST ​
    10·2 answers
  • A car traveled 100 miles in 10 minutes, what was the car's average speed ?
    12·2 answers
  • Calculate the area of this figure.<br> 11cm<br> 60m<br><br> 14cm
    5·2 answers
  • Watch help video
    11·2 answers
  • If A={4,5,6,7} and b={a,e,i,o,u} then find n (A)+n(B) ​
    13·1 answer
  • A spcial die is made in the shape of an icosahedron its faces are numbered wish the 1 to 20
    8·1 answer
  • A camp counselor and four campers are to be seated along a picnic bench. In how many ways can this be done if the counselor must
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!