Before we begin, remember the following:
-ve * -ve = +ve
-ve * +ve = -ve
+ve * -ve = -ve
+ve * +ve = +ve
Now, for each of the given expression, we will expand the brackets, combine like terms and then compare the final output with the given expressions.
First expression:
(x² + 15x + 65) + (2x - 5)(3x + 8)
x² + 15x + 65 + (2x*3x + 2x*8 - 5*3x - 5*8)
x² + 15x + 65 + (6x² + 16x - 15x - 40)
x² + 15x + 65 + 6x² + 16x - 15x - 40
x²(1+6) + x(15+16-15) + 65-40
7x² + 16x + 25
This expression corresponds to letter B
Second expression:
(4x + 1)(3x - 4) - (5x² - 10x - 12)
4x(3x) + 4x(-4) + 1(3x) + 1(-4) - (5x² - 10x - 12)
12x² - 16x + 3x - 4 - 5x² + 10x + 12
x²(12-5) + x(-16+3+10) - 4+12
7x² - 3x + 8
This expression corresponds to letter D
Third expression:
(8x² + 19x + 4) + (3x + 2)(x - 5)
8x² + 19x + 4 + (3x*x + 3x*(-5) + 2*x + 2*(-5))
8x² + 19x + 4 + (3x² - 15x + 2x - 10)
8x² + 19x + 4 + 3x² - 15x + 2x - 10
x²(8+3) + x(19-15+2) + 4-10
11x² + 6x - 6
This is equivalent to letter A
Fourth expression:
(6x + 1)(3x - 7) - (7x² - 34x - 20)
6x(3x) + 6x(-7) + 1(3x) + 1(-7) - (7x² - 34x - 20)
18x² - 42x + 3x - 7 - 7x² + 34x + 20
x²(18-7) + x(-42+3+34) - 7+20
11x² - 5x + 13
This is equivalent to letter C
Hope this helps :)
Answer:
The small balloon bouquet uses 7 balloons and the large one uses
18 balloons.
Step-by-step explanation:
Let's say that small balloon bouquets are S and large balloon bouquets are L. For the graduation party the employee assembled 6 small bouquets and 6 large bouquets, the total number of balloon used is 150. To put the sentence into an equation will be:
6S + 6L= 150
S+L= 25 ----> 1st equation
For Father's Day, the employee uses 6 small bouquet and 1 large bouquet, the total number of balloons used is 60. The equation will be:
6S + 1L= 60
1L= 60- 6S ----> 2nd equation
We can solve the number of small balloon bouquet by substitute the 2nd equation into 1st. The calculation will be:
S+L = 25
S+ (60-6S)= 25
-5S= 25-60
-5S= -35
S= -35/-5
S=7
Then we can find L by substitute S value to 1st or 2nd equation.
S+L=25
7+L=25
L=18
Hope this helps ;)
Answer:5/10
Step-by-step explanation:
1/2 x 5 = 5/10
Answer:
(2x+9) ^3
Step-by-step explanation:
(((8 • (x3)) + 729) + (22•33x2)) + 486x
((23x3 + 729) + (22•33x2)) + 486x
Factoring: 8x3+108x2+486x+729
8x3+108x2+486x+729 is a perfect cube which means it is the cube of another polynomial
In our case, the cubic root of 8x3+108x2+486x+729 is 2x+9
Factorization is (2x+9)3
Hope this helped