The correct option is B.
All objects emit electromagnetic radiation and the amount of radiation emitted at each wavelength depend on the temperature of the object. This observation is described by Wien's law, which states that the black body radiation curve for different temperatures peaks at a wavelength that is inversely proportional to the temperature.
For #5 It's helpful to draw a free body diagram so you know which way the forces are acting on the block.
the weight mg is acting downwards, and you need to find the vertical and horizontal components of mg using sin and cosine. so do 15x9.8xsin40 which is the force. Assuming no friction, this is the only force acting on the block, as the forces on the vertical plane cancel out i.e the normal force and weight of the block.
after, just do F=ma And since you know F and m, solve for a.
Before answering this question, you must know the concept between extensive and intensive property. The extensive property does not depend on the amount of substance (like mass), which is the opposite of intensive properties. From the given choices, the rest are extensive properties except for <em>amount of matter</em>. Hence, that is the answer.
Answer:
(a) 1.16 s
(b)0.861 Hz
Explanation:
(a) Period : The period of a simple harmonic motion is the time in seconds, required for a object undergoing oscillation to complete one cycle.
From the question,
If 1550 cycles is completed in (30×60) seconds,
1 cycle is completed in x seconds
x = 30×60/1550
x = 1.16 s
Hence the period is 1.16 seconds.
(b) Frequency : This can be defined as the number of cycles that is completed in one seconds, by an oscillating body. The S.I unit of frequency is Hertz (Hz).
Mathematically, Frequency is given as
F = 1/T ........................... Equation 1
Where F = frequency, T = period.
Given: T = 1.16 s.
Substitute into equation 1
F = 1/1.16
F = 0.862 Hz
Hence thee frequency = 0.862 Hz