1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
RUDIKE [14]
3 years ago
6

%20%5Cfrac%7B1%7D%7B5%20%5Csqrt%7B3%7D%20%7D%20%20%20%2B%20%20%5Cfrac%7B3%20%5Csqrt%7B2%7D%20%7D%7B2%20%5Csqrt%7B3%7D%20%7D%20%20-%20%20%5Cfrac%7B2%20%5Csqrt%7B3%7D%20%7D%7B3%20%5Csqrt%7B2%7D%20%7D%20%29%20%3D%20" id="TexFormula1" title=" \frac{5}{5 \sqrt{6 + 2 \sqrt{3} } } \times ( \frac{1}{5 \sqrt{3} } + \frac{3 \sqrt{2} }{2 \sqrt{3} } - \frac{2 \sqrt{3} }{3 \sqrt{2} } ) = " alt=" \frac{5}{5 \sqrt{6 + 2 \sqrt{3} } } \times ( \frac{1}{5 \sqrt{3} } + \frac{3 \sqrt{2} }{2 \sqrt{3} } - \frac{2 \sqrt{3} }{3 \sqrt{2} } ) = " align="absmiddle" class="latex-formula"> ....................​
Mathematics
2 answers:
Effectus [21]3 years ago
4 0
Decimal form = 0.1702
Tems11 [23]3 years ago
4 0

Answer:

Hope this helps you

Step-by-step explanation:

......

You might be interested in
Suponga que desea utilizar un servicio de correo particular para enviar un paquete que tiene forma de caja rectangular con una s
statuscvo [17]

a) El volumen de la caja en función de su longitud es:

V_{caja}=\frac{x^{3}}{16}-\frac{25x^{2}}{2}+625x

b) El dominio de la ecuación del volumen son todos los números reales.

c) Las dimensiones del paquete con el mayor volumen posible son:

longitud de la caja  x = 30 plg

lado de la sección transversal L = 17.5 plg

a)

Definamos x como la longitud de la caja y L como el lado de la sección transversal, que es cuadrada para este caso.

Sabemos que la suma de su longitud (x) y el perímetro de la sección transversal (P = 4L) es igual a 100 plg.

x+4L=100 (1)

Ahora, el volumen de esta caja rectangular está dada por:

V_{caja}=A_{base}*x

V_{caja}=L^{2}*x (2)

Pero necesitamos expresar el volumen en función de x.

Despejamos L de la ecuación (1) y remplazarlo en (2).

Por lo tanto el volumen en función de x será.

V_{caja}=(\frac{100-x}{4})^{2}*x

V_{caja}=\frac{x^{3}}{16}-\frac{25x^{2}}{2}+625x

b)

Al ser la función un polinomio de orden 3 el dominio de esta función son todos los numeros reales.

c)

Observando la gráfica de esta función, podemos ver que para un valor aproxiamdo de x = 30 plg el valor de V tiene un punto de inflección, es por definición de maximización de una función que podemos usar ese punto para encontrar las dimensiones de la caja.

Por lo tanto si x = 30 plg el valor de L usando la ecuacion (1) sera:

L=\frac{100-x}{4}

L=\frac{100-30}{4}=17.5\: plg

Por lo tanto la máxima dimensión de la caja es:

x = 30 plg

L = 17.5 plg

Puedes aprender más sobre maximizar funciones aquí:

brainly.com/question/16339052

 

     

 

6 0
3 years ago
A survey of 285 adults found that during the last year, 75 traveled by plane but not by train, 55 traveled by train but not by p
meriva

Answer:

40

Step-by-step explanation:

Given that

Total number of adults, U = 285

Number of plane travellers, P = 75

Number of train travellers, T = 55

To find the number of people that didn't travel by any means of transportation listed in the question, then we say

Total number of adults minus number people who traveled by plane or train minus number of people who traveled by bus but not by plane or train.

This means that number of people who didn't travel by any of the three means of transportation, N =

N = U - pt - b

N = 285 - 215 - 30

N = 40

Therefore, the total number needed is 40

7 0
3 years ago
A girl threw a marble 15 m vertically up in the air which later fell and settled at the bottom of a lake 7 m deep. Find the tota
emmasim [6.3K]

Answer:

22 m

Step-by-step explanation:

Total distance travelled by marble while falling down = height above surface of lake + depth of lake = 15 + 7 = 22 m

6 0
4 years ago
Pls help me im sooo stuck on math​
Alla [95]
87

You can add up the angles that are labeled(73,110,and 90 because of the right angle) and get 273.

For a quadrilateral, all of the angles add up to 360.

So, subtract 360-273.

You get 87.

Hope this helps:)
8 0
3 years ago
The perimeter of a rectangle is equal to 10. If the length is halved and the width is doubled, the new perimeter is increased by
monitta

Step-by-step explanation:

Let's call x the lenght and y the height. The perimeter will be:

p = 2x + 2y = 10

When the lenght is halved and the height double we'll have:

p = x + 4y = 14

These 2 equations form a system of equations2 that can be solved and give as result:

y = 3

x = 2

6 0
2 years ago
Other questions:
  • HELP ME!!! Answer in Scientific Notation and explain and show work.
    5·1 answer
  • Find the area. The figure is not drawn to scale.
    10·2 answers
  • Factor expression. Show your work. q^2 - 9 = (q + 3)(g - 3)
    9·1 answer
  • A man drove 14 mi directly east from his home, made a left turn at an intersection, and then traveled 5 mi north to his place of
    12·1 answer
  • Mr. Hershman has purchased a farm that is in the shape of a rectangle. The dimensions of the piece of land are 4.74.7 km by 2.58
    11·1 answer
  • Is 1/sec^2(θ) the same as cos^2(θ)
    10·1 answer
  • The measure of an exterior angle of a triangle is equal to the sum of the measures of what two interior angles
    6·1 answer
  • Help finding the function for these problems. Need help finding the domain and range. Help PLEASE
    9·1 answer
  • What is the total cost if Jamil uses the pool on 6 days? Explain how to use the equation to find the cost.​
    10·1 answer
  • Write the missing digits in each calculation so that the value of each sum or difference is correct.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!