The answer to this question is 22
Answer:
$324,870.00
Step-by-step explanation:
357,000.00 x .09 = $32,130.00
357,000.00 - $$32,130.00 = $324,870.00
Answer:
See attached image
Step-by-step explanation:
This equation for a parabola is given in vertex form, so it is very simple to extract the coordinates of its vertex, by using the opposite of the number that accompanies the variable "x" in the squared expression (opposite of 2) for the vertex's x-value, and the value of the constant (-6) for the vertex's y-value.
The vertex coordinates are therefore: (-2,-6)
The equation of the axis of symmetry of the parabola is a vertical line passing through the vertex. Since all vertical lines have the shape x = constant in our case, in order to pass through (-2,-6) the vertical line is defined by the equation: x = -2.
See image attached to find the vertex drawn as a red point, and the axis of symmetry as an orange vertical line passing through it.
Answer:
- y = -(x-1)² . . . . reflected over the x-axis
- y = (x-1)² +1 . . . . translated up by 1 unit
- y = (x+1)² . . . . reflected over the y-axis
- y = (x-2)² . . . . translated right by 1 unit
- y = (x-1)² -3 . . . . translated down by 3 units
- y = (x+3)² . . . . translated left by 4 units
Step-by-step explanation:
Since you have studied transformations, you are familiar with the effect of different modifications of the parent function:
- f(x-a) . . . translates right by "a" units
- f(x) +a . . . translates up by "a" units
- a·f(x) . . . vertically scales by a factor of "a". When a < 0, reflects across the x-axis
- f(ax) . . . horizontally compresses by a factor of "a". When a < 0, reflects across the y-axis.
Note that in the given list of transformed functions, there is one that is (x+1)². This is equivalent to both f(x+2) and to f(-x). The latter is a little harder to see, until we realize that (-x-1)² = (x+1)². That is, this transformed function can be considered to be either a translation of (x-1)² left by 2 units, or a reflection over the y-axis.