Answer:
B. 5.2
Step-by-step explanation:
<em><u>:-[ </u></em><em><u>y</u></em><em><u>o</u></em><em><u>u</u></em><em><u> </u></em><em><u>w</u></em><em><u>i</u></em><em><u>l</u></em><em><u>l</u></em><em><u> </u></em><em><u>k</u></em><em><u>n</u></em><em><u>o</u></em><em><u>w</u></em><em><u> </u></em><em><u>t</u></em><em><u>o</u></em><em><u> </u></em><em><u>h</u></em><em><u>a</u></em><em><u>v</u></em><em><u>e</u></em><em><u> </u></em><em><u>b</u></em><em><u>r</u></em><em><u>a</u></em><em><u>i</u></em><em><u>n</u></em><em><u>l</u></em><em><u>y</u></em><em><u>:-) </u></em>
Answer:
Z=8 is the answer
Step-by-step explanation:
first, you add 8 to both sides which leaves you with 5z=40. then after that you divide both sides by 5 which leaves you with 5/5z = 40/5. then buy dividing 5 by 5 its leaves you with 1 which is equal to z because blank variables equal 1. On the other side if the equation 40 by 5 is 8 so that leaves you with z=8
Answer:
22 years old
Step-by-step explanation:
Step 1: multiply the numbers in front of the parentheses with each term inside the parentheses
15p - 9 = 5p - 5
Step 2: get like terms on the same side
10p = 4
Step 3: divide both sides by 10
p = 4/10
Step 4: simplify
p = 2/5
Answer:
1-i and -1+i
Step-by-step explanation:
We are to find the square roots of
. First, convert from Cartesian to polar form:



Next, use the formula
where
to find the square roots:
<u>When k=1</u>
<u />![\displaystyle \sqrt[2]{2}\biggr[cis\biggr(\frac{\frac{3\pi}{2}+2\pi(1)}{2}\biggr)\biggr]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Csqrt%5B2%5D%7B2%7D%5Cbiggr%5Bcis%5Cbiggr%28%5Cfrac%7B%5Cfrac%7B3%5Cpi%7D%7B2%7D%2B2%5Cpi%281%29%7D%7B2%7D%5Cbiggr%29%5Cbiggr%5D)
![\displaystyle \sqrt{2}\biggr[cis\biggr(\frac{3\pi}{4}+\pi\biggr)\biggr]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Csqrt%7B2%7D%5Cbiggr%5Bcis%5Cbiggr%28%5Cfrac%7B3%5Cpi%7D%7B4%7D%2B%5Cpi%5Cbiggr%29%5Cbiggr%5D)


<u>When k=0</u>
<u />![\displaystyle \sqrt[2]{2}\biggr[cis\biggr(\frac{\frac{3\pi}{2}+2\pi(0)}{2}\biggr)\biggr]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Csqrt%5B2%5D%7B2%7D%5Cbiggr%5Bcis%5Cbiggr%28%5Cfrac%7B%5Cfrac%7B3%5Cpi%7D%7B2%7D%2B2%5Cpi%280%29%7D%7B2%7D%5Cbiggr%29%5Cbiggr%5D)


Thus, the square roots of -2i are 1-i and -1+i