Answer:
10.50°C
Step-by-step explanation:
Given x = 2 + t , y = 1 + 1/2t where x and y are measured in centimeters. Also, the temperature function satisfies Tx(2, 2) = 9 and Ty(2, 2) = 3
The rate of change in temperature of the bug path can be expressed using the composite formula:
dT/dt = Tx(dx/dt) + Ty(dy/dt)
If x = 2+t; dx/dt = 1
If y = 1+12t; dy/dt = 1/2
Substituting the parameters gotten into dT/dt we will have;
dT/dt = 9(1)+3(1/2)
dT/dt = 9+1.5
dT/dt = 10.50°C/s
Hence the rate at which the temperature is rising along the bug's path is 10.50°C/s
Hmm, the 2nd derivitve is good for finding concavity
let's find the max and min points
that is where the first derivitive is equal to 0
remember the difference quotient
so
f'(x)=(x^2-2x)/(x^2-2x+1)
find where it equals 0
set numerator equal to 0
0=x^2-2x
0=x(x-2)
0=x
0=x-2
2=x
so at 0 and 2 are the min and max
find if the signs go from negative to positive (min) or from positive to negative (max) at those points
f'(-1)>0
f'(1.5)<0
f'(3)>0
so at x=0, the sign go from positive to negative (local maximum)
at x=2, the sign go from negative to positive (local minimum)
we can take the 2nd derivitive to see the inflection points
f''(x)=2/((x-1)^3)
where does it equal 0?
it doesn't
so no inflection point
but, we can test it at x=0 and x=2
at x=0, we get f''(0)<0 so it is concave down. that means that x=0 being a max makes sense
at x=2, we get f''(2)>0 so it is concave up. that means that x=2 being a max make sense
local max is at x=0 (the point (0,0))
local min is at x=2 (the point (2,4))
Answer:
1/20
Step-by-step explanation:
The probability of any of the friends sitting on any of the seats is equal.
So the probability of Hamad sitting on the first seat = 1/5
As Hamad is sat on the first seat, there are now 4 available seats, so the probability of Riyadh sitting on the second seat = 1/4
Therefore, probability of Hamad sitting on the first seat AND Riyadh sitting on the second seat = 1/5 x 1/4 = 1/20
Answer:
180- 117 = 63
Step-by-step explanation: