You would need to know the dimensions of the pyramid and wether it was triangle or square bottomed
<u>We are given:</u>
An even number 'n', multiplied by the next consecutive even number is 168
<u>Solving for n:</u>
From the given statement, we can say that:
n(n+2) = 168 [<em>n multiplied by the next even number 'n+2'</em>]
n² + 2n = 168
n² + 2n - 168 = 0 [<em>subtracting 168 from both sides</em>]
We can see that we now have a quadratic equation, solving using splitting the middle term
n² + 14n - 12n - 168 = 0
n(n + 14) -12(n + 14) = 0 <em>[factoring out common terms</em>]
(n-12)(n+14) = 0
Here, we can divide both sides by either (n-12) OR (n+14)
Checking the result in both the cases:
(n + 14) = 0/(n-12) (n-12) = 0/(n+14)
n + 14 = 0 n - 12 = 0
n = -14 n = 12
Both these values are even and since we are not told if the number 'n' is positive or negative, both 12 and -14 are the possible values of n
A watch decreased in price by
4
5
. After the reduction it was priced at £10. What was the original price of the watch?
This is the difference of 2 squares
square root of a^6 = a^3
and square root of 25 b^2 = 5b so we get
(a^3 + 5b)(a^3 - 5b)
Thats the answer