1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
cestrela7 [59]
3 years ago
11

Is there any positive number b so that the expression logb (0) makes sense? Explain how you know?

Mathematics
1 answer:
topjm [15]3 years ago
7 0

Answer:

No.

Step-by-step explanation:

The logarithm of a number to the base b of a certain number  is the exponent

to which the base b is raised to equal the given value.

So say we have  logb y = a, then

y = b^a

So if y = 0 then

0 = b^a

If b is a positive number then there is no value of a that makes y = 0.

for example y = b^0 = 1, y = b^1 = b  etc.

You might be interested in
Kim has a strong first serve; whenever it is good (that is, in) she wins the point 70% of the time. Whenever her second serve is
mestny [16]
Lets put ti this way:
P[1st serve good & wins point] = 60% * 70% = 42% = A 
<span>P[2nd serve good & wins point] = 40% * 76% *57% = 17.328% = B </span>

<span>1. P[win point] = A+B = C = 59.328% <------- </span>
<span>2. P[1st serve good | win point ] = A/C = 42 / 59.328 = 0.707 or 70.7%
Please </span><span>remember that 2nd serve come into use only if 1st serve is not good</span>
4 0
3 years ago
Calculate the following without the use of a calculator /
11111nata11111 [884]

Answer:

5

Step-by-step explanation:

6 - (-4) - 5 =

= 6 + 4 - 5

= 10 - 5

= 5

4 0
3 years ago
The expression (2x2)3 is equivalent to _____.<br><br> a.6x2<br> b.6x5<br> c.8x6
nignag [31]

Answer:

A

Step-by-step explanation:

(2x2)3

= (4)3

=12

6x2 = 12

So the answer is A

4 0
3 years ago
Read 2 more answers
Es matemáticas, suma y resta de fracciones <br><br> Ayuda porfa
Vesnalui [34]

\bold{\huge{\purple{\underline{ Solutions }}}}

<h3><u>Solution </u><u>(</u><u>a)</u><u> </u><u>:</u><u>-</u></h3>

\bold{\dfrac{ 7}{6}}{\bold{ + }}{\bold{\dfrac{ 2}{5}}}

  • <u>By </u><u>taking </u><u>LCM </u><u>of </u><u>the </u><u>given </u><u>denominators </u>

\sf{ = \:}{\sf{\dfrac{ 35 +  12 }{30}}}

\sf{ =\: }{\sf{\red{\dfrac{ 47 }{30}}}}

Hence, The answer is 47/30

<h3><u>Solution </u><u>(</u><u> </u><u>b</u><u>) </u><u> </u><u>:</u><u>-</u></h3>

\bold{\dfrac{ 1}{7}}{\bold{ + }}{\bold{\dfrac{ 1}{8}}}

  • <u>By taking LCM of the given denominators </u>

\sf{ =\: }{\sf{\dfrac{ 8 + 7 }{56}}}

\sf{ =\: }{\sf{\red{\dfrac{ 15}{56}}}}

Hence, The answer is 15/56

<h3><u>Solution </u><u>(</u><u> </u><u>c</u><u>) </u><u> </u><u>:</u><u>-</u></h3>

\bold{\dfrac{ 7}{13}}{\bold{ + }}{\bold{\dfrac{ 5}{10}}}

  • <u>By taking LCM of the given denominators </u>

\sf{=\:}{\sf{\dfrac{ 70 + 65 }{130}}}

\sf{ = \:}{\sf{\dfrac{ 135}{130}}}

\sf{ =\:}{\sf{\red{\dfrac{ 27}{26}}}}

Hence, The answer is 27/26

<h3><u>Solution </u><u>(</u><u> </u><u>d</u><u>) </u><u> </u><u>:</u><u>-</u></h3>

\bold{\dfrac{ 7}{5}}{\bold{ - }}{\bold{\dfrac{ 1}{3}}}

  • <u>By taking LCM of the given denominators</u>

\sf{ =\:}{\sf{\dfrac{ 21 - 5 }{15}}}

\sf{ = \:}{\sf{\red{\dfrac{ 16}{15}}}}

Hence, The answer is 16/15

<h3><u>Solution </u><u>(</u><u> </u><u>e) </u><u>:</u><u>-</u></h3>

\bold{\dfrac{ 8}{7}}{\bold{ - }}{\bold{\dfrac{ 9}{11}}}

  • <u>By taking LCM of the given denominators</u>

\sf{=\:}{\sf{\dfrac{ 88 - 63}{77}}}

\sf{=\:}{\sf{\red{\dfrac{ 25}{77}}}}

Hence, The answer is 25/77

<h3><u>Solution </u><u>(</u><u> </u><u>f</u><u>) </u><u>:</u><u>-</u></h3>

\bold{\dfrac{ 11}{4}}{\bold{ - }}{\bold{\dfrac{ 1}{9}}}

  • <u>By taking LCM of the given denominators</u>

\sf{=\:}{\sf{\dfrac{ 99 - 4}{36}}}

\sf{ =\: }{\sf{\red{\dfrac{ 95}{36}}}}

Hence, The answer is 95/36

3 0
2 years ago
Read 2 more answers
Find the volume of the solid that lies under the hyperbolic paraboloid z=3y2−x2+6 and above the rectangle R=[−1,1]×[1,2].
Gekata [30.6K]

Answer:

The volume of the solid is \frac{76}{3} u^3

Step-by-step explanation:

The requested volume can be calculated through an iterated integral of the function that defines the solid. For such an iterated integral, the integration region defined by the rectangle  [-1,1] X [1,2] is taken in the plane XY. In this way the volume of the solid is:

\int _1^2\left[\int _{-1}^1\:\left(3y^2-x^2+6\right)dx\right]dy = \int _1^2[12-\frac{2}{3}+6y^2]dy\right = \frac{76}{3} u^3

4 0
3 years ago
Other questions:
  • Number 2 I need help on
    5·1 answer
  • Only the right answers will get brainliest, thanks and five stars!
    12·1 answer
  • In ΔPQR, r = 4.9 cm, ∠R=21° and ∠P=104°. Find the length of p, to the nearest 10th of a centimeter.
    9·2 answers
  • What is the inverse of f(x) =
    5·1 answer
  • Find an ordered pair (x, y) that is a solution to the equation.<br> -x+4y= 2
    12·1 answer
  • I need help with this.<br> Find the surface area of each 3D figure below.
    5·1 answer
  • PLEASE HELP pleaseee this is due very soon and I can’t afford to fail
    8·1 answer
  • You want a $60 video game. Your brother said he will pay for 30%. How much money will your brother pay? (HURRY PLEASEEE)
    12·1 answer
  • Helppp pls ASAP first correct answer gets brainleist​
    10·2 answers
  • Quick please!
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!