<h3>
<u>Given</u><u> </u><u>:</u><u>-</u></h3>
- PQ = 8cm
- Radius = 5cm
- Two Tangents = P & Q.
<h3>
<u>Construction</u><u> </u><u>:</u><u>-</u></h3>
<h3>
<u>⟼</u><u> </u><u>Solution</u><u> </u><u>:</u><u>-</u></h3>
Here, ΔTPQ is isosceles and TO is the angle bisector of ∠PTO.
[∵ TP=TQ = Tangents from T upon the circle]
⠀⠀⠀⠀⠀⠀⠀⠀∴ OT⊥PQ
⠀⠀⠀
___________________________________________
By Applying Pythagoras Theorem in ∆OPR :
OR = √OP² - PR²
OR = √5² - 4²
OR = 3cm
__________________________________________
Now,
∠TPR + ∠RPO = 90° (∵TPO=90°)
∠TPR + ∠PTR (∵TRP=90°)
<u>
</u><u>∴ ∠RPO = ∠PTR</u>
⠀⠀
<u>∴ Right triangle TRP is similar to the right </u><u>triangle</u><u> </u><u>PR</u><u>O</u><u>.</u> [By A-A Rule of similar triangles]
⟼
⟼
⟼
<h3>Hence you got your answer here. </h3>
⠀⠀⠀⠀⠀
<h2>-MissAbhi</h2>
The answer is x - 5
To solve (x^2 - 8x + 15) /(x - 3) you factor the numerator and denominator and cancel the common factors.
Answer: (x,y)=(-22/69 , 2/23)
Y=6x+2
3x+12y=6x+2
Simplify the expression
-6x+y=2
-3x+12y=2
Multiply both sides of the equation by
-6x+y=2
6x-24y=-4
eliminate at least one variable by adding the equation
-23y=-2
Divide both sides
y=2/23
Substitute the value of y
-6x +2/23 =2
Solve the equation
x=-22/69
The possible solution of the system is the ordered pair
(x,y)=(-22/69, 2/23)
Check the solution
2/23=3x(-22/69)+12x 2/23=6x(-22/69)+2
Simplify
2/23=2/23=2/23
The ordered pair is a solution
Solution
(x,y)=(-22/69 , 2/23)