Answer:
Step-by-step explanation:
9{[(9×9-10)-2]-5}
=9{[(81-10)-2]-5}
=9{[71-2]-5}
=9{69-5}
=9(64)
=576
Answer:
Mrs. Wong spend $545.76 on tiles.
Step-by-step explanation:
Mrs. Wong has 144 tiles that she is going to place on her square kitchen floor. If the tiles are $3.79 each, how much did Mrs. Wong spend on tile?
we are given
number of ties=144
cost of one tie=3.79 dollar
we have to find
total cost of 144 ties
for this we will multiply 144 by 3.79
multiplying 144 by 3.79 gives=144*3.79
it other words
one tile cost=$3.79
and for 144 ties cost
multiplying 144 on both sides
144 tiles cost=3.79*144=$545.76
A simple diagram will show you the intersection of altitudes is in the 2nd quadrant. It must have x-coordinate -2, as the altitude to the "base" y=10 must be the vertical line through (-2, 4).
The appropriate choice is ...
... C: (-2, 12)
![\begin{cases} 4x+3y=-8\\\\ -8x-6y=16 \end{cases}~\hspace{10em} \begin{array}{|c|ll} \cline{1-1} slope-intercept~form\\ \cline{1-1} \\ y=\underset{y-intercept}{\stackrel{slope\qquad }{\stackrel{\downarrow }{m}x+\underset{\uparrow }{b}}} \\\\ \cline{1-1} \end{array} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%204x%2B3y%3D-8%5C%5C%5C%5C%20-8x-6y%3D16%20%5Cend%7Bcases%7D~%5Chspace%7B10em%7D%20%5Cbegin%7Barray%7D%7B%7Cc%7Cll%7D%20%5Ccline%7B1-1%7D%20slope-intercept~form%5C%5C%20%5Ccline%7B1-1%7D%20%5C%5C%20y%3D%5Cunderset%7By-intercept%7D%7B%5Cstackrel%7Bslope%5Cqquad%20%7D%7B%5Cstackrel%7B%5Cdownarrow%20%7D%7Bm%7Dx%2B%5Cunderset%7B%5Cuparrow%20%7D%7Bb%7D%7D%7D%20%5C%5C%5C%5C%20%5Ccline%7B1-1%7D%20%5Cend%7Barray%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![4x+3y=-8\implies 3y=-4x-8\implies y=\cfrac{-4x-8}{3}\implies y=\stackrel{\stackrel{m}{\downarrow }}{-\cfrac{4}{3}} x-\cfrac{8}{3} \\\\[-0.35em] ~\dotfill\\\\ -8x-6y=16\implies -6y=8x+16\implies y=\cfrac{8x+16}{-6} \\\\\\ y=\cfrac{8}{-6}x+\cfrac{16}{-6}\implies y=\stackrel{\stackrel{m}{\downarrow }}{-\cfrac{4}{3}} x-\cfrac{8}{3}](https://tex.z-dn.net/?f=4x%2B3y%3D-8%5Cimplies%203y%3D-4x-8%5Cimplies%20y%3D%5Ccfrac%7B-4x-8%7D%7B3%7D%5Cimplies%20y%3D%5Cstackrel%7B%5Cstackrel%7Bm%7D%7B%5Cdownarrow%20%7D%7D%7B-%5Ccfrac%7B4%7D%7B3%7D%7D%20x-%5Ccfrac%7B8%7D%7B3%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20-8x-6y%3D16%5Cimplies%20-6y%3D8x%2B16%5Cimplies%20y%3D%5Ccfrac%7B8x%2B16%7D%7B-6%7D%20%5C%5C%5C%5C%5C%5C%20y%3D%5Ccfrac%7B8%7D%7B-6%7Dx%2B%5Ccfrac%7B16%7D%7B-6%7D%5Cimplies%20y%3D%5Cstackrel%7B%5Cstackrel%7Bm%7D%7B%5Cdownarrow%20%7D%7D%7B-%5Ccfrac%7B4%7D%7B3%7D%7D%20x-%5Ccfrac%7B8%7D%7B3%7D)
one simple way to tell if both equations do ever meet or have a solution is by checking their slope, notice in this case the slopes are the same for both, meaning the lines are parallel lines, however, notice both equations are really the same, namely the 2nd equation is really the 1st one in disguise.
since both equations are equal, their graph will be of one line pancaked on top of the other, and the solutions is where they meet, hell, they meet everywhere since one is on top of the other, so infinitely many solutions.