Answer:
Y=s^2/36 and y=5.7;14.3 ft
Step-by-step explanation:
The question was not typed correctly. Here, a better version:
<em>The aspect ratio is used when calculating the aerodynamic efficiency of the wing of a plane for a standard wing area, the function A(s)=s^2/36 can be used to find the aspect ratio depending on the wingspan in feet. If one glider has an aspect ratio of 5.7, which system of equations and solution can be used to represent the wingspan of the glider? Round solution to the nearest tenth if necessary. </em>
<em>
</em>
<em>Y=s^2/36 and y=5.7;14.3 ft
</em>
<em>Y=5.7s^2 and y=36; s=2.5ft
</em>
<em>Y=36s^2 and y=0; s=0.4 ft
</em>
<em>Y=s^2/36 +5.7 and y=0; s=5.5 ft</em>
In the function A(s)=s^2/36 A(s) represents the aspect ratio and s the wingspan. If one glider has an aspect ratio of 5.7, then A(s) = 5.7. We want to know the wingspan of the glider. Replacing A(s) by Y we get the following system of equation:
Y=s^2/36
with y = 5.7
5.7 = s^2/36
5.7*36 = s^2
√205.2 = s
14.3 ft
Multiples of 30 : 30,60,90,120,150....
and the first one that 4 goes into evenly is 60
Answer:
xn = n·(n + 1)/2
Step-by-step explanation:
Answer:
3.16 units
Step-by-step explanation:
It has been given that the triangles JKL and the triangle RST are congruent.
That implies that, the length of the side JK, KL, and JL is equivalent to the length of the sides RS, ST, and RT respectively.
Now, to find the length of JK we need to find the length of the side RS. The coordinates of the points R and S are
and
.
The length of the side RS is equal to the distance between point R and S.
RS 



Now that we have the length of the side RS, and the triangles JKL and RST are congruent therefore, the length of the side JK is 3.16 units.