The balanced equation will be:
Ca(IO₃)₂(s) ⇄ Ca²⁺(aq) + 2 IO₃⁻(aq)
The Ksp equation will be:
Ksp = [Ca²⁺][IO₃⁻]²
Answer:
Kc =![\frac{[8.326x10-3]^{1} }{[1.113x10-2]^{1}[1.490x10-2]^{1} }](https://tex.z-dn.net/?f=%5Cfrac%7B%5B8.326x10-3%5D%5E%7B1%7D%20%7D%7B%5B1.113x10-2%5D%5E%7B1%7D%5B1.490x10-2%5D%5E%7B1%7D%20%20%7D)
Kc = 50.2059
Explanation:
1. Balance the equation
2. Use the Kc formula
Remember that pure substances, like H2 are not included on the Kc formula
Answer:
The reason they don't react is because Elements with full octets are stable, the Elements with no unpaired electrons do not react at all in the decay.
Answer:
Middle: Self heating containers are really expensive but are useful because they are easy to use, portable, and can be recycled, unlike a camp stove which is not as easily moved.
Explanation:
i neeed a better image for the first an last boo<3
Answer: D
Explanation:
A reducing agent is a species that reduces other compounds, and is thereby oxidized. The whole compound becomes the reducing agent. In other words, of a compound is oxidized, then they are the reducing agent. On the other hand, if the compound is reduced, it is an ozidizing agent.
Since we have established that a reducing agent is the compound being oxidized, we know that A is not our answer. An oxidized compound is losing electrons. Choice A states exactly this.
For B, this is true as we have established this already.
C is also correct. Since a reducing agent loses electrons, it becomes more positive. This makes the oxidation number increase.
D would be our correct answer. It is actually a good oxidizing agent is a metal in a high oxidation state, such as Mn⁷⁺.