That’s nice. Maybe bring your own next time
Answer:
1+2 = 12
Explanation:
this is a math equation, not a chemical formula
Answer:
17.3 g
Explanation:
<u>Given the following data;</u>
- Quantity of heat, Q = 0.507 J
- Temperature = 0.007°C
- Specific heat capacity of water = 4.2 J/g°C
Mathematically, Heat capacity is given by the formula;

Where;
- Q represents the heat capacity or quantity of heat.
- M represents the mass of an object.
- C represents the specific heat capacity of water.
- T represents the temperature.
Making "M" the subject of formula, we have;

Substituting the values into the formula, we have;


<em>Mass, m = 17.3 grams</em>
A mineral occurs naturally, meaning that even though there are artificial substances that might be described as mineral-like they are not minerals
<u>Answer:</u> The volume of concentrated solution required is 9.95 mL
<u>Explanation:</u>
To calculate the pH of the solution, we use the equation:
![pH=-\log[H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%5BH%5E%2B%5D)
We are given:
pH = 0.70
Putting values in above equation, we get:
![0.70=-\log[H^+]](https://tex.z-dn.net/?f=0.70%3D-%5Clog%5BH%5E%2B%5D)
![[H^+]=10^{-0.70}=0.199M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D10%5E%7B-0.70%7D%3D0.199M)
1 mole of nitric acid produces 1 mole of hydrogen ions and 1 mole of nitrate ions.
Molarity of nitric acid = 0.199 M
To calculate the volume of the concentrated solution, we use the equation:

where,
are the molarity and volume of the concentrated nitric acid solution
are the molarity and volume of diluted nitric acid solution
We are given:

Putting values in above equation, we get:

Hence, the volume of concentrated solution required is 9.95 mL