Answer:
17.71N/m
Explanation:
The period of the spring is expressed according to the expression;

m is the mass of the object
k is the force constant
Given
m = 5.50kg
T = 3.50s
Substitute into the formula;

Hence the force constant of the spring is 17.71N/m
Answer:
The manipulated variable is also known as the independent variable
Explanation:
When remembering this remember independent as in you independently change the outcome
Answer:
Explanation:
Situations in which an electron will be affected by an external electric field but will not be affected by an external magnetic field
a ) When an electron is stationary in the electric field and magnetic field , he will be affected by electric field but not by magnetic field. Magnetic field can exert force only on mobile charges.
b ) When the electron is moving parallel to electric field and magnetic field . In this case also electric field will exert force on electron but magnetic field field will not exert force on electrons . Magnetic field can exert force only on the perpendicular component of the velocity of charged particles.
Situations when electron is affected by an external magnetic field but not by an external electric field
There is no such situation in which electric field will not affect an electron . It will always affect an electron .
Answer:
The eyepiece comprises a converging lens that is a magnifying lens. The lens has a short focal length,
This lens magnifies this image.
Explanation:
In lenses such as those in microscopes and telescopes, the objective forms an image with the following features:
1. Image is real
2. Image is diminished in size
3. Also, the image formed is upside-down.
The eyepiece comprises a converging lens that is a magnifying lens. The lens has a short focal length,
This lens magnifies this image.
Ok, this is a 2d kinematics problem, the falls 14 m part is confusing, I think it means in the x direction, but you don't need it anyway.
If we know it goes 4m into the air, we know d = 4m (height of wall), we also know the acceleration a=-9.8m/s^2 (because gravity) and that the vertical velocity when it just clears the wall will be 0 m/s, which we'll call our final velocity (Vf). Using Vf^2 = Vi^2 +2a*d, we can solve this for Vi and drop Vf because it's zero to get: Vi = sqrt(-2ad), plug in numbers (don't forget a is negative) and you get 8.85 m/s in the vertical direction. The x-direction velocity requires that we solve the y-direction for time, using Vf= Vi + at, we solve for t, getting t= -Vi/a, plug in numbers t= -8.85/-9.8 = 0.9 s. Now we can use the simple v = d/t (because x-direction has no acceleration (a=0)), and plug in the distance to the wall and the time it takes to get there v = (4/.9) = 4.444 m/s, this is the velocity in the x direction, we use Pythagoras' theorem to find the total velocity, Vtotal = sqrt(Vx^2 + Vy^2), so Vtotal = sqrt(8.85^2+4.444^2) = 9.9m/s. Yay physics!