Answer:
dolphins and wolfs very easy
Explanation:
Answer:
minimum thickness of the coating = 122.868 nm
Explanation:
Given data
lens index of refraction = 1.29
wavelength = 634 nm
glass index of refraction = 1.53
to find out
minimum thickness of the coating
solution
we have given non reflective coating
so
we know that minimum thickness of the coating formula
minimum thickness of the coating = Wavelength / 4n
here n is coating index of refraction
so put here both value to get thickness
minimum thickness of the coating = Wavelength / 4n
minimum thickness of the coating = 634 / 4 ( 1.29 )
so minimum thickness of the coating = 122.868 nm
Answer:
3.75 MeV
Explanation:
The energy of the photon can be given in terms of frequency as:
E = h * f
Where h = Planck's constant
The frequency of the photon is 6 * 10^20 Hz.
The energy (in Joules) is:
E = 6.63 x10^(-34) * 6 * 10^(20)
E = 39.78 * 10^(-14) J = 3.978 * 10^(-13) J
We are given that:
1 eV = 1.06 * 10^(-19) Joules
This means that 1 Joule will be:
1 J = 1 / (1.06 * 10^(-19)
1 J = 9.434 * 10^(18) eV
=> 3.978 * 10^(-13) J = 3.978 * 10^(-13) * 9.434 * 10^(18) = 3.75 * 10^(6) eV
This is the same as 3.75 MeV.
The correct answer is not in the options, but the closest to it is option C.
Answer:
The electric potential at the midpoint between the two particles is 3.349 X 10⁻³ Volts
Explanation:
Electric potential is given as;
V = E*r
where;
E is the electric field strength, = kq/r²
V = ( kq/r²)*r
V = kq/r
k is coulomb's constant = 8.99 X 10⁹ Nm²/C²
q is the charge of the particles = 1.6 X 10⁻¹⁹ C
r is the distance between the particles = 859 nm
At midpoint, the distance = r/2 = 859nm/2 = 429.5 nm
V = (8.99 X 10⁹ * 1.6 X 10⁻¹⁹)/ (429.5 X 10⁻⁹)
V = 3.349 X 10⁻³ Volts
Therefore, the electric potential at the midpoint between the two particles is 3.349 X 10⁻³ Volts
Answer:
a) 3.0×10⁸ m
b) 0 m
Explanation:
Displacement is the distance from the starting position to the final position.
a) In half a year, the Earth travels from one point on the circle to the point on the exact opposite side of the circle (from 0° to 180°). The distance between the points is the diameter of the circle.
x = 2r
x = 2 (1.5×10⁸ m)
x = 3.0×10⁸ m
b) In a full year, the Earth travels one full revolution, so it ends up back where it started. The displacement is therefore 0 m.