Answer:
Theorem: The diagonals of a parallelogram bisect each other. Proof: Given ABCD, let the diagonals AC and BD intersect at E, we must prove that AE ∼ = CE and BE ∼ = DE. The converse is also true: If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram.
Step-by-step explanation:
Answer: The given logical equivalence is proved below.
Step-by-step explanation: We are given to use truth tables to show the following logical equivalence :
P ⇔ Q ≡ (∼P ∨ Q)∧(∼Q ∨ P)
We know that
two compound propositions are said to be logically equivalent if they have same corresponding truth values in the truth table.
The truth table is as follows :
P Q ∼P ∼Q P⇔ Q ∼P ∨ Q ∼Q ∨ P (∼P ∨ Q)∧(∼Q ∨ P)
T T F F T T T T
T F F T F F T F
F T T F F T F F
F F T T T T T T
Since the corresponding truth vales for P ⇔ Q and (∼P ∨ Q)∧(∼Q ∨ P) are same, so the given propositions are logically equivalent.
Thus, P ⇔ Q ≡ (∼P ∨ Q)∧(∼Q ∨ P).
Answer:
-20
Step-by-step explanation:
It is like the opposite number. Because 20 is positive its inverse is negative 20.
HOPE THIS HELPED
You multiply 86 x .45 and you get the answer of 38.7