Actually, that does not happen until the protostar becomes a star when nuclear ignition starts and is maintained. It takes awhile for new star to go through its T-Tauri stage and settle down on the main sequence.
<span>A STAR does not reach hydrostatic equilibrium until it on the main sequence. Otherwise, it would remain a brown dwarf with not enough mass to to maintain nuclear fusion for more than 3,000 to 10,00 years. </span>
the mass of aluminum oxide (101.96 g/mol) produced from 1.74 g of manganese(iv) oxide (86.94 g/mol) is 1.36g
The reaction is 3 MnO2 + 4 Al ------ 2Al2o3+ Mn
3 mole of manganese oxide give 2 moles of aluminum oxide so by the reaction n( MnO2)/3 =n(al203)2
the formula is n= mass/M so, now substituting values
m (Al2O3)= m(MnO2) X 2 X M (Al2O3) / M(MnO2 X3
so, by substituting values, 2 X101.96 X1.74g / 3 X 86.94 =1.36g
so mass of aluminum oxide obtained = 1.36g
To learn more about Mass:
brainly.com/question/19694949
#SPJ4
The balanced equation is 2
AlI
3
(
a
q
)
+
3
Cl
2
(
g
)
→
2
AlCl
3
(
a
q
)
+
3
I
2
(
g
)
.
<u>Explanation:</u>
- Aluminum has a typical oxidation condition of 3+ , and that of iodine is 1- .
Along these lines, three iodides can bond with one aluminum. You get AlI3. For comparable reasons, aluminum chloride is AlCl3.
- Chlorine and iodine both exist normally as diatomic components, so they are Cl2( g ) also, I2( g ), individually. In spite of the fact that I would anticipate that iodine should be a strong.
Balancing the equation, we get:
2AlI
3( aq ) + 3Cl2
( g ) → 2AlCl3
( aq )
+ 3
I
2 ( g )
-
Realizing that there were two chlorines on the left, I simply found the basic numerous of 2 and 3 to be 6, and multiplied the AlCl 3 on the right.
-
Normally, presently we have two Al on the right, so I multiplied the AlI 3 on the left. Hence, I have 6 I on the left, and I needed to significantly increase I 2 on the right.
-
We should note, however, that aluminum iodide is viciously receptive in water except if it's a hexahydrate. In this way, it's most likely the anhydrous adaptation broke down in water, and the measure of warmth created may clarify why iodine is a vaporous item, and not a strong.