Nonparametric tests are also called distribution-free tests because they don't assume that your data follow a specific distribution. You may have heard that you should use nonparametric tests when your data don't meet the assumptions of the parametric test, especially the assumption about normally distributed data.
Answer:

General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>
<em />
<em />
<em />
<u>Step 2: Simplify</u>
- Combine like terms (x):

- Combine like terms (y):

Answer:
x = -3 and x = -3/2
Step-by-step explanation:
After writing down the polynomial, split it; put a line between 3x^2 and -18x. Look and 2x^3 + 3x^2 and -18x - 27 separately and factor them both:
p(x) = 2x^3 + 3x^2 <u>- 18x -27</u>
p(x) = x^2(2x+3) <u>-9(2x+3)</u>
Now notice how x^2 and -9 have the same factor (2x+3). That means x^2 and -9 can go together:
p(x) = (x^2 - 9)(2x+3)
Factor it once more because there's a difference of squares:
p(x) = (x+3)(x-3)(2x+3)
Now just plug in whatever makes the each bracket equal 0:
x = -3, x = 3, and x = -3/2
Those are your zeros.
Find the slope between the 2 points and plug inotllto point slope form
3.5 multiplied by 52 would be 182, and that is the 52nd term in that sequence.