<span>Find
the values of a and b that make f continuous everywhere. f(x) = x^2 − 4
/ x − 2 if x < 2 ax^2 − bx + 3 if 2 ≤ x < 3 4x − a + b if x ≥ 3
</span>
a=7/12
b=13/2
-72-4x^2+8x^3-36x/x-3
-4(18+x^2-2x^3+9x)/x-3
-4(-2x^3+x^2+9x+18)/x-3
-4(-2x^2x(x-3)-5x x(x-3)-6(x-3) )/x-3
-4 x(-(x-3) ) x (2x^2+5x+6)/x-3
-4 x (-1) x (2x^2 +5x+6)
8x^2+20x+24
Answer:
your correct
Step-by-step explanation:
Answer:
by5b5ybyb54
Step-by-step explanation:
yb5ybyby