Answer:
h'(x) = (-x² ln x + x² + 1) / (x (x² + 1)^(³/₂))
Step-by-step explanation:
h(x) = ln x / √(x² + 1)
You can either use quotient rule, or you can rewrite using negative exponents and use product rule.
h(x) = (ln x) (x² + 1)^(-½)
h'(x) = (ln x) (-½) (x² + 1)^(-³/₂) (2x) + (1/x) (x² + 1)^(-½)
h'(x) = (-x ln x) (x² + 1)^(-³/₂) + (1/x) (x² + 1)^(-½)
h'(x) = (x² + 1)^(-³/₂) (-x ln x + (1/x) (x² + 1))
h'(x) = (1/x) (x² + 1)^(-³/₂) (-x² ln x + x² + 1)
h'(x) = (-x² ln x + x² + 1) / (x (x² + 1)^(³/₂))
5% of 235 is: 235*(5/100)= 235/20 = 11,75 or 5% of 470 is: 470/20 = 23,5
Total cost = 2*(235 + 11,75) = 2*246,75 = 493,5 or Total cost = 470 + 23,5 = 493,5
Answer:
The profit would be 7.7 million in 2007
Step-by-step explanation: