The answer is <span>D.when the aim is to show electron distributions in shells. This is because there are some instances when elements don't possess a regular or normal electron configuration. There are those who have special electron configurations wherein a lower subshell isn't completely filled before occupying a higher subshell. It is best to visualize such cases using the orbital notation.</span>
Answer:
electronegativity increases
Answer:
Change in internal energy (ΔU) = -9 KJ
Explanation:
Given:
q = –8 kJ [Heat removed]
w = –1 kJ [Work done]
Find:
Change in internal energy (ΔU)
Computation:
Change in internal energy (ΔU) = q + w
Change in internal energy (ΔU) = -8 KJ + (-1 KJ)
Change in internal energy (ΔU) = -8 KJ - 1 KJ
Change in internal energy (ΔU) = -9 KJ
For many solids<span> dissolved in </span>liquid<span> water, the </span>solubility <span>increases with </span>temperature<span>.</span>
27/208 = normality
12 x 10^-2 approx = normality
nw Ka = 14.3 x 10^-3
pKa = 3 - log 14
now, after getting the pKa put it in formula :
pH = pKa + log concn of ion/concn of salt and you'll get it
hope this helps