Answer:
Atoms form chemical bonds to make their outer electron shells more stable. ... An ionic bond, where one atom essentially donates an electron to another, forms when one atom becomes stable by losing its outer electrons and the other atoms become stable (usually by filling its valence shell) by gaining the electrons.
Explanation:
Answer:
The range of atoms = (30-300 pm) depending upon the element
Explanation:
The Atomic radii of the atom is the distance from the center of the circle to the outermost orbital.
The center of the circle is the nucleus and the radii is the outermost boundary.
The actual size of the atom is decided on the basis of the Zeff . Also known as <em>effective nuclear charge.</em>
<em>Zeff: It is the net positive charge felt by the outermost electron by the nucleus.</em>
<em>The value of Zeff depends upon the shielding constant. More the shielding less will be the Zeff . Hence the size of the atom increases.</em>
Due to shielding the outermost electrons feel less pull of nucleus.
<em>The greater the Zeff , the smaller the radius of the atom.</em>
The formula used to calculate the atomic mass is :
pm
Here "pm"= picometers

<u>The size of the smallest atom H-atom = 120 pm</u>
<u>The range of atoms = (30-300 pm)</u>
Answer:
pretty sure it's heterogeneous
Explanation:
Also, I saw you added me as a friend and I'm kinda curious as to why :)
Answer:
The total amount of heat released is 68.7 kJ
Explanation:
Given that:
mass of water = 94.0 g
moles of water = 94 / 18.02 = 5.216
80⁰C ------> 0⁰C --------> -30⁰C
Q1 = m Cp dT
= 94 x 4.184 x (0 - 80)
= -31463.68 J
= -31.43 kJ
Q2 = 6.01 x 10^3 x 5.216
= - 31348.16 J
= -31.35 kJ
Q3 = - 94 x 2.09 x 30
= - 5893.8 J
= -5.894 kJ
Total heat = Q1 + Q2 + Q3 = -31.43 kJ + (-31.35 kJ ) + (-5.894 kJ
) = -68.7 kJ
Total heat released = -68.7 kJ
Note that the "negative sign" simply indicates heat released, therefore no need to put it in the answer.
Explanation:
As it is known that molarity is the number of moles present in a liter of solution.
Mathematically, Molarity = 
As it is given that molarity is 0.10 M and volume is 10.0 ml. As 1 ml equals 0.001 L. Therefore, 10.0 ml will also be equal to 0.01 L.
Hence, putting these values into the above formula as follows.
Molarity = 
0.10 M = 
no. of moles = 0.001 mol
As molar mass of KCN is equal to 65.12 g/mol. Therefore, calculate the mass of KCN as follows.
No. of moles = 
0.001 mol = 
mass = 0.06152 g
Thus, we can conclude that 0.06152 grams of KCN are in 10.0 ml of a 0.10 M solution.