Answer:
25 inches
Step-by-step explanation:
If square has a perimeter of 20 inches, the length of each side is:

After cutting the square in half, we are left with two rectangles of 5 in x 2.5 in
Attaching those two smaller rectangles by their short end (2.5 in side), gives us a new rectangle with a height of 2.5 in and a length of 10 in (sum of the 5 in sides in each rectangle). The perimeter of this new rectangle is:

The perimeter is 25 inches.
Answer:εδΑΒΓΒΕ
![U4\leq \sqrt{x} \sqrt[n]{x} 64](https://tex.z-dn.net/?f=U4%5Cleq%20%5Csqrt%7Bx%7D%20%5Csqrt%5Bn%5D%7Bx%7D%2064)
Step-by-step explanation:
73hsay is a little bit too long and ∩679∨78ω8㏒∴≠÷±
<h3>
Answer: Choice D) 31.2 miles</h3>
This value is approximate.
============================================================
Explanation:
Let's focus on the 48 degree angle. This angle combines with angle ABC to form a 90 degree angle. This means angle ABC is 90-48 = 42 degrees. Or in short we can say angle B = 42 when focusing on triangle ABC.
Now let's move to the 17 degree angle. Add on the 90 degree angle and we can see that angle CAB, aka angle A, is 17+90 = 107 degrees.
Based on those two interior angles, angle C must be...
A+B+C = 180
107+42+C = 180
149+C = 180
C = 180-149
C = 31
----------------
To sum things up so far, we have these known properties of triangle ABC
- angle A = 107 degrees
- side c = side AB = 24 miles
- angle B = 42 degrees
- angle C = 31 degrees
Let's use the law of sines to find side b, which is opposite angle B. This will find the length of side AC (which is the distance from the storm to station A).
b/sin(B) = c/sin(C)
b/sin(42) = 24/sin(31)
b = sin(42)*24/sin(31)
b = 31.1804803080182 which is approximate
b = 31.2 miles is the distance from the storm to station A
Make sure your calculator is in degree mode.