The answer to your question is A
This problem can be readily solved if we are familiar with the point-slope form of straight lines:
y-y0=m(x-x0) ...................................(1)
where
m=slope of line
(x0,y0) is a point through which the line passes.
We know that the line passes through A(3,-6), B(1,2)
All options have a slope of -4, so that should not be a problem. In fact, if we check the slope=(yb-ya)/(xb-xa), we do find that the slope m=-4.
So we can check which line passes through which point:
a. y+6=-4(x-3)
Rearrange to the form of equation (1) above,
y-(-6)=-4(x-3) means that line passes through A(3,-6) => ok
b. y-1=-4(x-2) means line passes through (2,1), which is neither A nor B
****** this equation is not the line passing through A & B *****
c. y=-4x+6 subtract 2 from both sides (to make the y-coordinate 2)
y-2 = -4x+4, rearrange
y-2 = -4(x-1)
which means that it passes through B(1,2), so ok
d. y-2=-4(x-1)
this is the same as the previous equation, so it passes through B(1,2),
this equation is ok.
Answer: the equation y-1=-4(x-2) does NOT pass through both A and B.
If x is less than 81, then we get a solution, but x should also be larger than or equal to zero since radicands must be nonnegative, therefore, <span>x<81.
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
</span>
Answer:
Explanation:
To simplify a polynomial, we have to do two things: 1) combine like terms, and 2) rearrange the terms so that they're written in descending order of exponent.
First, we combine like terms, which requires us to identify the terms that can be added or subtracted from each other. Like terms always have the same variable (with the same exponent) attached to them. For example, you can add 1 "x-squared" to 2 "x-squareds" and get 3 "x-squareds", but 1 "x-squared" plus an "x" can't be combined because they're not like terms.
Let's identify some like terms below.
f(x)=−4x+3x2−7+9x−12x2−5x4
Here you can see that -4x and 9x are like terms. When we combine (add) -4x and 9x, we get 5x. So let's write 5x instead:
f(x)=5x+3x2−7−12x2−5x4
Let's do the same thing with the x-squared terms:
f(x)=5x+3x2−7−12x2−5x4
f(x)=5x−9x2−7−5x4
Now there are no like terms left. Our last step is to organize the terms so that x is written in descending power:
f(x)=−5x4−9x2+5x−7
Step-by-step explanation:
Answer:
811/16 i think
Step-by-step explanation: