Answer:
a = 2
Step-by-step explanation:
Let's find the equation of the line using the 2 points given.
Let's call -1 as x_1 and -5 as y_1
also, 4 as x_2 and 5 as y_2
The equation of line is :

<em>Let's plug the points and get the equation of the line:</em>

Now, to find a, we substitute a in x and 1 in y of the equation of the line we just got:

Answer:
23. a-T b-F
24. Words- *3* times the number of *feet*
Variable- Let *y* represent the number of *yards*
Model- (I can't do it)
Expression- The number of feet in*3* yards is given by the expression *3y*
25. 7.8
26. 8.3
27. 14.5
28. Yes. The communitive property tells us that we can switch any two numbers in a multiplication or addition problem
*I did that page like a month ago*
D) Line JK
<----->
JK
<em>H</em><em>o</em><em>pe </em><em>it </em><em>helps </em><em>:</em><em>)</em>
to solve for the dimensions (x+7)(x+2)=66,
we can first use the foiling method to simplify the left side.
x^2 + 2x + 7x + 14 = 66
x^2 + 9x + 14 = 66
now, subtract 66 from both sides.
x^2 + 9x - 52 = 0
now, split this into two parentheses.
(x + 13)(x - 4)
since the root of -13 would give you negative values, x=4. This means that the dimensions of the rectangle are 11 and 6.
The sin A is equal to 12/13 and the tan (A) is equal to 12/5.
<h3>RIGHT TRIANGLE</h3>
A triangle is classified as a right triangle when it presents one of your angles equal to 90º. The greatest side of a right triangle is called hypotenuse. And, the other two sides are called cathetus or legs.
The math tools applied for finding angles or sides in a right triangle are the trigonometric ratios or the Pythagorean Theorem.
The Pythagorean Theorem says:
. And the main trigonometric ratios are:

The question gives cos (A)=5/13. If cos (A) is represented by the quotient between the adjacent leg and the hypotenuse, you have:
adjacent leg=5
hypotenuse=13
Therefore, you can find the opposite leg of A from Pythagorean Theorem, see below.

Thus, the opposite leg is equal to 12. Now, you can find sin (A) since:

Finally, you can find the tan (A) since:

Learn more about trigonometric ratios here:
brainly.com/question/11967894
#SPJ1