Answer:
C
Step-by-step explanation:
(2x + 3)^5 = C(5,0)2x^5*3^0 +
C(5,1)2x^4*3^1 + C(5,2)2x^3*3^2 + C(5,3)2x^2*3^3 + C(5,4)2x^1*3^4 + C(5,5)2x^0*3^5
Recall that
C(n,r) = n! / (n-r)! r!
C(5,0) = 1
C(5,1) = 5
C(5,2) = 10
C(5,3) = 10
C(5,4) = 5
C(5,5) = 1
= 1(2x^5)1 + 5(2x^4)3 + 10(2x^3)3^2 + 10(2x^2)3^3 + 5(2x^1)3^4 + 1(2x^0)3^5
= 2x^5 + 15(2x^4) + 90(2x^3) + 270(2x^2) + 405(2x) +243
= 32x^5 + 15(16x^4) + 90(8x^3) + 270(4x^2) + 810x + 243
= 32x^5 + 240x^4 + 720x^3 + 1080x^2 + 810x + 243
Answer:
-0.2 is your answer correct me if i am wrong
Step-by-step explanation:
Answer:
Its not A and B and I know that, but can you show the rest so I can see if its C because the rest of the picture isn't there
Answer:
(a)
(b) L reaches its maximum value when θ = 0 because cos²(0) = 1
Step-by-step explanation:
Lambert's Law is given by:
(1)
(a) We can rewrite the above equation in terms of sine function using the following trigonometric identity:

(2)
By entering equation (2) into equation (1) we have the equation in terms of the sine function:
(b) When θ = 0, we have:
We know that cos(θ) is a trigonometric function, between 1 and -1 and reaches its maximun values at nπ, when n = 0,1,2,3...
Hence, L reaches its maximum value when θ = 0 because cos²(0) = 1.
I hope it helps you!
Answer:
15.0
Step-by-step explanation:
Let's start by looking at triangle ORQ. Since RQ is tangent to the circle, we know that angle ∠ORQ is 90°. Then, since OR is equivalent to the radius of 5, RQ is 5√3, and side OQ is clearly larger than RQ, we can identify this as a 90-60-30 degree triangle. This makes side OQ have a length of 10, and angle ∠QOR, opposite of the second largest side, has the second largest angle of 60°, leaving ∠OQR with an angle of 30°.
The formula for the chord length is 2r*sin(c/2), with c being the angle between the two points on the circle (in this case, ∠QOR=∠NOR).. Our radius is 5, so the length of chord NR is 2*5*sin(60/2)=5, making our answer 5(ON)+5(OR)+5(RN)