The length of the median from vertex C is equal to √17. As a median of a triangle is a line segment joining a single vertex to the midpoint of the opposite side of the triangle. In this case, the median will be from vertex C to the mid-point of the triangles side AB.<span> Thus, we can work out the length of the median from vertex C by using the Midpoint formula; M(AB) = (X</span>∨1 + X∨2) /2 ; (Y∨1 + Y∨2) /2 . Giving us the points of the midpoint of side AB, which can be plotted on the cartesian plane. to find the length of the median from vertex C, we can use the distance formula and the coordinates of the midpoint and vertex C , d = √(X∨2 - X∨1) ∧2 + (Y∨2 - Y∨1)∧2.
Thet contradict each other, that's why both of them are incorrect.
<span>Suppose that a polynomial has four roots: s, t, u, and v. If the polynomial were evaluated at any of these values, it would have to be zero. Therefore, the polynomial can be written in this form.
p(x)(x - s)(x - t)(x - u)(x - v), where p(x) is some non-zero polynomial
This polynomial has a degree of at least 4. It therefore cannot be cubic.
Now prove Kelsey correct. We have already proved that there can be no more than three roots. To prove that a cubic polynomial with three roots is possible, all we have to do is offer a single example of that. This one will do.
(x - 1)(x - 2)(x - 3)
This is a cubic polynomial with three roots, and four or more roots are not possible for a cubic polynomial. Kelsey is correct.
Incidentally, if this is a roller coaster we are discussing, then a cubic polynomial is not such a good idea, either for a vertical curve or a horizontal curve. I hope this helps</span><span>
</span>
Answer:
60 degree
Step-by-step explanation:
I don't know the process though