1. the answer is 24. think of x as the original amount, and y as the new amount. y times 1.5 is x, and y+12 is x. reverse that to figure out y, which is what we need, and you have x/1.5 = y as well as x-12 = y. Use the equal values method and make an equation x/1.5=x-12. solve this equation to get x, which is 36. to figure out the new amount, y, you need to subtract 12, which would help you get 24 as your final answer.
2. once again, create an equation. let's call team 1 x and team 2 y. team one has 1/4th as many as team 2, so that would be x=1/4y. An easier way to write that is 4x=y. after 6 people quit team two, that would be y-6. after the transfer, that would be y-6-12, and x+12 for the teams. they are equal after these, so y-6-12=x+12. solve this equation to get y-18= x+12. if you recall earlier, y was 4 times x, so substitute that into y to get 4x-18=x+12. Solve the equation to get 10 people on team one originally. your final answer is 10 people.
Answer:
0
Step-by-step explanation:
To make it easier, you calculate the volume of the first aquarium.
1st aquarium:
V = L x W x H
V = 8 x 9 x 13
V = 72 x 13
V = 936 in.
Rate: 936 in./2 min.
Now that you've got the volume and rate of the first aquarium, you can find how many inches of the aquarium is filled within a minute, which is also known as the unit rate. To do that, you have to divide both the numerator and denominator by their least common multiple, which is 2. 936 divided by 2 is 468 and 2 divided by 2 is 1.
So the unit rate is 468 in./1 min. Now that you've got the unit rate, you can find out how long it'll take to fill the second aquarium up by finding its volume first.
2nd aquarium:
V = L x W x H
V = 21 x 29 x 30
V = 609 x 30
V 18,270 inches
Calculations:
Now, you divide 18,270 by 468 to find how many minutes it will take to fill up the second aquarium. 18,270 divided by 468 is about 39 (the answer wasn't exact, so I said "about").
2nd aquarium's rate:
18,270 in./39 min.
As a result, it'll take about 39 minutes to fill up an aquarium measuring 21 inches by 29 inches by 30 inches using the same hose. I really hope I helped and that you understood my explanation! :) If I didn't, I'm sorry. I tried. :(