Answer:
6y + 48
Step-by-step explanation:
Use distributive property 6 x y = 6y
(keep the plus sign btw)
6 x 8 = 48
then place it in order: 6y + 48 is your algebra expression
Answer:
Part 4) Right triangle
Part 5) Kite
Step-by-step explanation:
Part 4) What kind of triangle is made by connecting the points A(0, –6), B(3, –6), and C(3, –2)?
Using a graphing tool
see the attached figure N 
The triangle of the figure is not equilateral------> The triangle does not have three equal sides
The triangle of the figure is a right triangle------>The triangle has an angle of 
The triangle of the figure is not isosceles------> The triangle does not have two equal sides
The triangle of the figure is not a right and isosceles
Part 5) What type of quadrilateral is formed by connecting the points
?
Using a graphing tool
see the attached figure N
The figure is not a rhombus------> All sides are not congruent
The figure is not a trapezoid-----> has not parallel sides
The figure is a kite------> Two disjoint pairs of consecutive sides are congruent and the diagonals meet at a right angle
<h3>
Answer: 0.5</h3>
========================================================
Explanation:
The ultimate goal is to find the value for lowercase c, or find the length of side c. So we'll use the portion sin(C)/c as part of the law of sines.
We don't know the value of lowercase 'a', so we'll ignore the sin(A)/a portion.
This leaves sin(B)/b
We see that one side is 2 cm long, so this means b = 2. The angle opposite this is 105 degrees, so B = 105.
The angle opposite side c is 15 degrees, so C = 15.
The lowercase letters represent side lengths, while the uppercase letters are angles.
--------------------------
We have enough to apply the law of sines to solve for side c.
sin(B)/b = sin(C)/c
sin(105)/2 = sin(15)/c
c*sin(105) = 2*sin(15) ............. cross multiply
c = 2*sin(15)/sin(105) .............. dividing both sides by sin(105)
c = 0.53589838486224
c = 0.5
Side c is roughly 0.5 cm long.
Make sure your calculator is in degree mode.
Answer:
Sample mean from population A has probably more accurate estimate of its population mean than the sample mean from population B.
Step-by-step explanation:
To yield a more accurate estimate of the population mean, margin of error should be minimized.
margin of error (ME) of the mean can be calculated using the formula
ME=
where
- z is the corresponding statistic in the given confidence level(z-score or t-score)
- s is the standard deviation of the sample (or of the population if it is known)
for a given confidence level, and the same standard deviation, as the sample size increases, margin of error decreases.
Thus, random sample of 50 people from population A, has smaller margin of error than the sample of 20 people from population B.
Therefore, sample mean from population A has probably more accurate estimate of its population mean than the sample mean from population B.
Week 4
you can see that the dots are the closest