9514 1404 393
Answer:
A. √13
Step-by-step explanation:
You can make an educated guess and come to the right conclusion.
The triangle is nearly an equilateral triangle. A triangle with two sides 3 and an angle of 60° would have a third side of 3. A triangle with two sides of 4 and an angle of 60° would have a third side of 4.
So, the third side must be between 3 and 4. Here is an evaluation of the answer choices:
__
A -- between 3 and 4, the correct choice
B -- 3, too short
C -- 1.73, too short
D -- more than 4, too long
__
The question can be answered using your triangle solver app on your calculator, or using the Law of Cosines.
c = √(a^2 +b^2 -2ab·cos(C))
c = √(3^2 +4^2 -2·3·4·(1/2)) = √(9 +16 -12)
c = √13 . . . . . length of the side opposite the 60° angle
Answer:
√105/2
Step-by-step explanation:
Given the surd expression √7.5×√3.5, this can also be expressed as;
√7.5×√3.5
= √75/10 × √35/10
= √(75×35)/10×`10
=√105×25/100
= 5√105/√100
=5√105/10
=√105/2
Hence the required expression a √105/2
Answer:
3/13
Step-by-step explanation:
Put the total number that tapped the ground AND 5/10 worms (which is 3) over the total number which is 13
so 3/13 which doesn't simplify
hope this helped :)
Answer:
The 95% confidence interval for the population proportion of tenth graders reading at or below the eighth grade level is (0.2087, 0.2507).
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of
, and a confidence level of
, we have the following confidence interval of proportions.

In which
z is the zscore that has a pvalue of
.
For this problem, we have that:
Suppose a sample of 1537 tenth graders is drawn. Of the students sampled, 1184 read above the eighth grade level. So 1537 - 1184 = 353 read at or below this level. Then

95% confidence level
So
, z is the value of Z that has a pvalue of
, so
.
The lower limit of this interval is:

The upper limit of this interval is:

The 95% confidence interval for the population proportion of tenth graders reading at or below the eighth grade level is (0.2087, 0.2507).