Answer:
Attraction between molecules of methane in liquid state is primarily due to "London dispersion force".
Explanation:
Methane is a non-polar and aprotic molecule. Hence there is no dipole moment in methane as well as no chance of hydrogen bonding formation by methane.
We know that all molecules contain electrons. Therefore transient dipole arises in every molecule due to revolution of electrons around nucleus in a non-circular orbit. Hence an weak intermolecular attraction force is always present in every molecule as a result of this which is termed as "London dispersion force".
So, attraction between molecules of methane in liquid state is primarily due to "London dispersion force".
Answer:
<h2>
"The sound wave traveled more quickly through the water than the balloon."</h2>
Explanation:
A sound is produced by <em>vibration. </em>These vibrations are called<u><em> "sound waves."</em></u> In order for sound waves to travel, it needs a particular medium. This medium can either be <em>solid, liquid or gas.</em>
Remember that sound waves travel faster in a <u>"solid medium,"</u> because this matter is denser than the other two. Sound waves travel faster in liquid than in gas, because water is densely packed with particles than gas (such as air).
In the situation above, the answer is "The sound wave traveled more quickly through the water than the balloon." As I've mentioned earlier, sound waves travel faster in liquid than in gas. Thus, the sound waves traveled faster through the glass of water (liquid) than the helium (gas) balloon.
Answer:
obtain (food or provisions)
Explanation:
example: a girl foraging grass for oxen
Answer:
The sky looks different in each nighttime section of the artifact because the artifact sections represent different seasons. ... Different constellations are visible on different nights throughout the year because of the earth's orbit. The Earth orbits around the sun. A full orbit is 365 days or one year.
Explanation: