Answer:
<h2><u>
neutron capture
</u></h2>
<u></u>
Explanation:
<em>Hope this helps :) </em>
<em>Pls make brainliest :3 </em>
<em>And have an amazing day <3</em>
Answer:
This question is incomplete
Explanation:
This question is incomplete because the result of the described experiment would have better determined the type of scientific explanation to profer. However, the type of material that will preserve the relative hotness or temperature of the hot coffee for the longest time will be a material than can resist heat transfer. These materials tend to keep hot substances hot by not allowing the heat of the coffee to be conducted or pass through it. These materials are mostly insulators or made by placing an insulator between two heat conductors.
Generally, heat is usually transferred from a region of higher concentration to a region of lower concentration, hence when the heat is denied of this transfer, the heat will remain trapped in the "heat-donor" substance (in this case the hot coffee). Thus, the material chosen (A, B or C) will be the material that resists heat transfer the most based on the explanation above.
Assuming you are asking for the names of the elements in that formula , the answer is
carbon
hydrogen
chlorine
fluorine
sodium
oxygen
Answer:
The final temperature of hydrogen gas is 537.63 K.
Explanation:
Given data:
Initial volume = 2.00 L
Initial pressure = 740 mmHg (740/760 = 0.97 atm)
Initial temperature = 25 °C (25 +273 = 298 K)
Final temperature =?
Final volume = 3.50 L
Final pressure = standard = 1 atm
Formula:
According to general gas equation:
P₁V₁/T₁ = P₂V₂/T₂
P₁ = Initial pressure
V₁ = Initial volume
T₁ = Initial temperature
P₂ = Final pressure
V₂ = Final volume
T₂ = Final temperature
Solution:
P₁V₁/T₁ = P₂V₂/T₂
T₂ = P₂V₂T₁ / P₁V₁
T₂ = 1 atm × 3.5 L × 298 K / 0.97 atm × 2.00 L
T₂ = 1043 atm .L. K / 1.94 atm. L
T₂ = 537.63 K
Answer: The mass of lead deposited on the cathode of the battery is 1.523 g.
Explanation:
Given: Current = 62.0 A
Time = 23.0 sec
Formula used to calculate charge is as follows.

where,
Q = charge
I = current
t = time
Substitute the values into above formula as follows.

It is known that 1 mole of a substance tends to deposit a charge of 96500 C. Therefore, number of moles obtained by 1426 C of charge is as follows.

The oxidation state of Pb in
is 2. So, moles deposited by Pb is as follows.

It is known that molar mass of lead (Pb) is 207.2 g/mol. Now, mass of lead is calculated as follows.

Thus, we can conclude that the mass of lead deposited on the cathode of the battery is 1.523 g.