Figure #1
use the smaller part of the figure with the dimensions of 1x2x3 and find the volume of that 1x2x3= 6m
find the area of the bigger part 3x6x3= 54m
54+6= 60m³
Figure #2
smaller part 2x2x7= 28m
bigger part 7x5x3= 105m
105+28= 133ft³
Answer:
do u still need this question answeered?
Step-by-step explanation:
The correct answer is: [C]: " (0, 24) " .
___________________________________________________________
Explanation:
___________________________________________________________
Given the quadratic function:
___________________________________________________________
→ " y = (x <span>− 8) (x + 3) " ; </span>← Note: Replace the "f(x)" with: "y" ;
→ Find the "y-intercept".
___________________________________________________________
→ Note: The "y-intercept" is the coordinate of the point(s) of the graph of the equation at which the graph crosses the "x-axis" when "x = 0" .
→ So; we set plug in "0" for "x" into our equation; and solve for "y" ;
→ " y = (x − 8) (x + 3) " ;
→ y = (0 − 8) (0 + 3) ;
→ y = (-8) * (3) ;
→ y = - 24 ;
___________________________________________________________
So, the "y -intercept" of the <em><u>given</u></em> quadratic function is:
the point at which: "x = 0 ; y = -24 " ;
→ that is; the point the coordinates: " (0, - 24) " ;
___________________________________________________________
→ which is: Answer choice: [C]: " (0, - 24) " .
___________________________________________________________
Answer:
Step-by-step explanation:
How does lack of sleep affect risk of injury
Answer:

Step-by-step explanation:
We want to find the Riemann sum for
with n = 6, using left endpoints.
The Left Riemann Sum uses the left endpoints of a sub-interval:

where
.
Step 1: Find 
We have that 
Therefore, 
Step 2: Divide the interval
into n = 6 sub-intervals of length 
![a=\left[0, \frac{\pi}{8}\right], \left[\frac{\pi}{8}, \frac{\pi}{4}\right], \left[\frac{\pi}{4}, \frac{3 \pi}{8}\right], \left[\frac{3 \pi}{8}, \frac{\pi}{2}\right], \left[\frac{\pi}{2}, \frac{5 \pi}{8}\right], \left[\frac{5 \pi}{8}, \frac{3 \pi}{4}\right]=b](https://tex.z-dn.net/?f=a%3D%5Cleft%5B0%2C%20%5Cfrac%7B%5Cpi%7D%7B8%7D%5Cright%5D%2C%20%5Cleft%5B%5Cfrac%7B%5Cpi%7D%7B8%7D%2C%20%5Cfrac%7B%5Cpi%7D%7B4%7D%5Cright%5D%2C%20%5Cleft%5B%5Cfrac%7B%5Cpi%7D%7B4%7D%2C%20%5Cfrac%7B3%20%5Cpi%7D%7B8%7D%5Cright%5D%2C%20%5Cleft%5B%5Cfrac%7B3%20%5Cpi%7D%7B8%7D%2C%20%5Cfrac%7B%5Cpi%7D%7B2%7D%5Cright%5D%2C%20%5Cleft%5B%5Cfrac%7B%5Cpi%7D%7B2%7D%2C%20%5Cfrac%7B5%20%5Cpi%7D%7B8%7D%5Cright%5D%2C%20%5Cleft%5B%5Cfrac%7B5%20%5Cpi%7D%7B8%7D%2C%20%5Cfrac%7B3%20%5Cpi%7D%7B4%7D%5Cright%5D%3Db)
Step 3: Evaluate the function at the left endpoints






Step 4: Apply the Left Riemann Sum formula

