Hey i think the only mistake i caught was when you put 3 points under the line mark instead of only needing 2.
Possibly another mistake at 3a, Only 2 points (but i could be wrong)
Answer:
See answers below
Step-by-step explanation:
From the given functions, the equivalent function for when x = 0 is -(x-1)²
h(x) = -(x-1)²
h(0) = -(0-1)²
h(0)= -(-1)²
h(0) = -1
when x = 2, the equivalent function is -1/2x - 1
h(x) = -1/2x - 1
h(2) = -1/2(2) - 1
h(2) = -1-1
h(2) = -2
when x = 5, the equivalent function is -1/2x - 1
h(x) = -1/2x - 1
h(5) = -1/2(5) - 1
h(5) = -5/2-1
h(5) = -7/2
For each x value, add 3 to get y values.
0+3=3
2+3=5
4+3=7
6+3=9
Final answers, respectively: 3,5,7,9
Answer:
SUMMARY:
→ Not a Polynomial
→ A Polynomial
→ A Polynomial
→ Not a Polynomial
→ A Polynomial
→ Not a Polynomial
Step-by-step explanation:
The algebraic expressions are said to be the polynomials in one variable which consist of terms in the form
.
Here:
= non-negative integer
= is a real number (also the the coefficient of the term).
Lets check whether the Algebraic Expression are polynomials or not.
Given the expression

If an algebraic expression contains a radical in it then it isn’t a polynomial. In the given algebraic expression contains
, so it is not a polynomial.
Also it contains the term
which can be written as
, meaning this algebraic expression really has a negative exponent in it which is not allowed. Therefore, the expression
is not a polynomial.
Given the expression

This algebraic expression is a polynomial. The degree of a polynomial in one variable is considered to be the largest power in the polynomial. Therefore, the algebraic expression is a polynomial is a polynomial with degree 5.
Given the expression

in a polynomial with a degree 4. Notice, the coefficient of the term can be in radical. No issue!
Given the expression

is not a polynomial because algebraic expression contains a radical in it.
Given the expression

a polynomial with a degree 3. As it does not violate any condition as mentioned above.
Given the expression


Therefore, is not a polynomial because algebraic expression really has a negative exponent in it which is not allowed.
SUMMARY:
→ Not a Polynomial
→ A Polynomial
→ A Polynomial
→ Not a Polynomial
→ A Polynomial
→ Not a Polynomial
Answer:
Oh my gosh!
Step-by-step explanation:
Good job, nice!