1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vredina [299]
3 years ago
11

In your stor 155 class, the professor returns midterm 2 and claims that the average score was 83 out of 100 with a standard devi

ation of 8 points. when the professor steps out of the room, you quickly select a simple random sample of students (all students are present that day) and note their scores: 68, 75, 88, 79, 78, 79, 65, 77, 85, 71
a.you strongly suspect that the professor is overstating the average so that students will blame themselves if they have a low midterm score. state the null and alternative hypotheses for the appropriate test of significance at α=0.05.
Mathematics
2 answers:
Marizza181 [45]3 years ago
8 0
The null hypothesis is that the mean is 83 out of 100.  The alternative hypothesis is that the mean is less than 83.
Vlad1618 [11]3 years ago
7 0

Answer:

We conclude that the professor overestimated the average score and the average score is less than 83.

Step-by-step explanation:

We are given the following in the question:

Population mean, μ = 83

Sample:

68, 75, 88, 79, 78, 79, 65, 77, 85, 71

Mean = \displaystyle\frac{\text{Sum of all observations}}{\text{Total number of observation}}

Mean =\displaystyle\frac{765}{10} = 76.5

Sample size, n = 10

Alpha, α = 0.05

Population standard deviation, σ = 8

First, we design the null and the alternate hypothesis

H_{0}: \mu = 83\\H_A: \mu < 83

We use One-tailed z test to perform this hypothesis.

Formula:

z_{stat} = \displaystyle\frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}} }

Putting all the values, we have

z_{stat} = \displaystyle\frac{76.5 - 83}{\frac{8}{\sqrt{10}} } = -2.57

Now, z_{critical} \text{ at 0.05 level of significance } = -1.64

Since,  

z_{stat} < z_{critical}

We reject the null hypothesis and accept the alternate hypothesis.

Thus, the professor overestimated the average score and the average score is less than 83.

You might be interested in
A field goal post in football is 3.33 yards above the ground. If a football player kicks the ball at a 10 degree square angle in
ale4655 [162]
  The distance is 19 yards or 18.9 yards:
because tan(10)=opposite/adjacent=3.33/x and x is distance
x=3.33/tan(10)=18.9 yd
4 0
3 years ago
Read 2 more answers
(GIVING BRAINLYST) 1(Multiple Choice Worth 2 points) (15.01 LC) Which number sequence follows the rule subtract 15 starting from
KatRina [158]

D

Step-by-step explanation:

The correct answer is option D, which is 105, 90, 75, 60, 45.

5 0
1 year ago
If the area of a rectangle with width X can be represented with the expression a(x) = x(14-x), what is the perimeter of the rect
dimaraw [331]

Expression for perimeter is 2(14-x + x) = 28

<u>Step-by-step explanation:</u>

Step 1:

Given expression for area of the rectangle = a(x) = x(14-x) where x is the width. Then length = 14-x since area = length × width

Step 2:

Find expression for perimeter of the rectangle.

Perimeter of the rectangle = 2(length + width) = 2(14 - x + x) = 2 × 14 = 28

7 0
4 years ago
I need help please HeLp
Savatey [412]

Answer:

The triangle is 1, since 10 - 1 is 9.

Hope that helps!

Step-by-step explanation:

6 0
3 years ago
I need help please. Thanks!
Karolina [17]

Answer:

A

Step-by-step explanation:

We are given the function f and its derivative, given by:

f^\prime(x)=x^2-a^2=(x-a)(x+a)

Remember that f(x) is decreasing when f'(x) < 0.

And f(x) is increasing when f'(x) > 0.

Firstly, determining our zeros for f'(x), we see that:

0=(x-a)(x+a)\Rightarrow x=a, -a

Since a is a (non-zero) positive constant, -a is negative.

We can create the following number line:

<-----(-a)-----0-----(a)----->

Next, we will test values to the left of -a by using (-a - 1). So:

f^\prime(-a-1)=(-a-1-a)(-a-1+a)=(-2a-1)(-1)=2a+1

Since a is a positive constant, (2a + 1) will be positive as well.

So, since f'(x) > 0 for x < -a, f(x) increases for all x < -a.

To test values between -a and a, we can use 0. Hence:

f^\prime(0)=(0-a)(0+a)=-a^2

This will always be negative.

So, since f'(x) < 0 for -a < x < a, f(x) decreases for all -a < x < a.

Lasting, we can test all values greater than a by using (a + 1). So:

f^\prime(a+1)=(a+1-a)(a+1+a)=(1)(2a+1)=2a+1

Again, since a > 0, (2a + 1) will always be positive.

So, since f'(x) > 0 for x > a, f(x) increases for all x > a.

The answer choices ask for the domain for which f(x) is decreasing.

f(x) is decreasing for -a < x < a since f'(x) < 0 for -a < x < a.

So, the correct answer is A.

3 0
3 years ago
Other questions:
  • I need help!!!!!!!!!!!!!!?!!!
    11·1 answer
  • Ron ran a path that was 1/8of a mile long.He ran the path 24 times.How many miles did he run
    6·2 answers
  • Consider the function,
    11·1 answer
  • Find the following measure for this figure.
    12·2 answers
  • -7(x + 9) = 9(x - 5) - 14x Solve for x. SHOW WORK.
    14·2 answers
  • Please Help me if i dont get this done i will have to stay in school instead of my regular 12:45 I will permanently have to stay
    13·1 answer
  • Find the value of x in the triangle shown below
    6·1 answer
  • Is <br><img src="https://tex.z-dn.net/?f=%20%5Csqrt%7B5%7D%20" id="TexFormula1" title=" \sqrt{5} " alt=" \sqrt{5} " align="absmi
    6·2 answers
  • Help meeeeeeeeeeeeeeee
    13·2 answers
  • The terminal side of angle θ intersects the unit circle in the first quadrant at (16/19,y). What are the exact values of sinθ an
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!