Answer:
588.2 mL
Explanation:
- FeSO₄(aq) + 2KOH(aq) → Fe(OH)₂(s) + K₂SO₄(aq)
First we <u>calculate how many Fe⁺² moles reacted</u>, using the given <em>concentration and volume of FeSO₄ solution</em> (the number of FeSO₄ moles is equal to the number of Fe⁺² moles):
- moles = molarity * volume
- 187 mL * 0.692 M = 129.404 mmol Fe⁺²
Then we convert Fe⁺² moles to KOH moles, using the stoichiometric ratios:
- 129.404 mmol Fe⁺² *
= 258.808 mmol KOH
Finally we<u> calculate the required volume of KOH solution</u>, using <em>the given concentration and the calculated moles</em>:
- volume = moles / molarity
- 258.808 mmol KOH / 0.440 M = 588.2 mL
<span>Cost and availability of fuel is a considerable factor when dealing with nuclear power. Fission requires an element that can be easily split in a particle accelerator, such as uranium or plutonium. Fusion, on the other hand, uses isotopes of hydrogen atoms, specifically deuterium and tritium, that can be obtained from ordinary water</span>
In order to find out the ranking of ions basicity, check the
pKa values of each ions. The principle that you need to remember is that the
stronger the acid the weaker the corresponding conjugate base. The pKa dictates
acid value of the compound. The answer would be CH3NH, CH3O-, and CH3CH2-.
Answer:
Cr(OH)2(s), Na+(aq), and NO3−(aq)
Explanation:
Let is consider the molecular equation;
2NaOH(aq) + Cr(NO3)2(aq) -----> 2NaNO3(aq) + Cr(OH)2(s)
This is a double displacement or double replacement reaction. The reacting species exchange their partners. We can see here that both the sodium ion and chromium II ion both exchanged partners and picked up each others partners in the product.
Sodium ions and nitrate ions now remain in the solution while chromium II hydroxide which is insoluble is precipitated out of the solution as a solid hence the answer.
Answer:
G- Gallons-Miles
Explanation
Even though gallons of gas are converted to miles you cannot physically convert gallons of something to miles.