Explanation:
Given that,
Area enclosed by a brass bracelet, 
Initial magnetic field, 
The electrical resistance around the circumference of the bracelet is, R = 0.02 ohms
Final magnetic field, 
Time, 
The expression for the induced emf is given by :
= magnetic flux
So, the induced emf in the bracelet is 0.678 volts.
Using ohm's law to find the induced current as :
V = IR


I = 33.9 A
or
I = 34 A
So, the induced current in the bracelet is 34 A. Hence, this is the required solution.
Gas has no certain shape However, its Volume can change with Differences in Heat and Pressure.
Yes, three good answers:
-- <span>a measure of how fast something is moving,
-- always measured in terms of a unit of distance divided by a unit of time,
and
-- the distance covered per unit time.
</span>
Answer:
0.69s
Explanation:
10 cm = 0.1 m
Let t be the time that radial and tangential components of the linear acceleration of a point on the rim be equal in magnitude. At that time we have the angular velocity would be

And so the radial acceleration is

The tangential acceleration is always the same since angular acceleration is constant:

For these 2 quantities to be the same



