Answer:
C is the best answer because we all know that clock is part of our daily lives but we don't know the about its background
Answer:
Part a)

Part b)

Part c)

Part d)

Explanation:
Part a)
While bucket is falling downwards we have force equation of the bucket given as

for uniform cylinder we will have

so we have


now we have




now we have


Part b)
speed of the bucket can be found using kinematics
so we have



Part c)
now in order to find the time of fall we can use another equation



Part d)
as we know that cylinder is at rest and not moving downwards
so here we can use force balance



I need pictures or something
Answer:
Water gets up to the Earth's atmosphere by evaporating from a body of water, which is then they become water vapor. It returns back to the surface by returning back to its water state and falling back down (as rain). The water vapor turns into clouds (clouds are really just water droplets), and when it cannot hold anymore waters, it disperses all the water (by raining).