Answer:
a) Li2CO3
b) NaCLO4
c) Ba(OH)2
d) (NH4)2CO3
e) H2SO4
f) Ca(CH3COO)2
g) Mg3(PO4)2
f) Na2SO3
Explanation:
a) 2Li + CO3 ↔ Li2CO3
b) NaOH * HCLO4 ↔ NaCLO4 + H2O
c) Ba + 2H2O ↔ Ba(OH)2 +
d) 2NH4 + H2CO3 ↔ (NH4)2CO3 + H2O
c) SO2 + NO2 +H2O ↔ H2SO4 + NOx
f) 2CH3COOH + CaO ↔ Ca(CH3COOH)2 + H2O
g) 3MgO + 2H3PO4 ↔ Mg3(PO4)2 + H2O
h) NaOH + H2SO3 ↔ Na2SO3 + H2O
The answer is B. This is because Sodium has 1 valence electron and Fluorine has 7 valence electrons. All elements want 8 valence electrons so they may be stale, like the noble gases are. Hope this helps.
<u>Answer:</u> The value of
of the reaction is 28.38 kJ/mol
<u>Explanation:</u>
For the given chemical reaction:

- The equation used to calculate enthalpy change is of a reaction is:
![\Delta H^o_{rxn}=\sum [n\times \Delta H^o_f_{(product)}]-\sum [n\times \Delta H^o_f_{(reactant)}]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28product%29%7D%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28reactant%29%7D%5D)
The equation for the enthalpy change of the above reaction is:
![\Delta H^o_{rxn}=[(1\times \Delta H^o_f_{(SO_2Cl_2(g))})]-[(1\times \Delta H^o_f_{(SO_2(g))})+(1\times \Delta H^o_f_{(Cl_2(g))})]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%281%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28SO_2Cl_2%28g%29%29%7D%29%5D-%5B%281%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28SO_2%28g%29%29%7D%29%2B%281%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28Cl_2%28g%29%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![\Delta H^o_{rxn}=[(1\times (-364))]-[(1\times (-296.8))+(1\times 0)]=-67.2kJ/mol=-67200J/mol](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%281%5Ctimes%20%28-364%29%29%5D-%5B%281%5Ctimes%20%28-296.8%29%29%2B%281%5Ctimes%200%29%5D%3D-67.2kJ%2Fmol%3D-67200J%2Fmol)
- The equation used to calculate entropy change is of a reaction is:
![\Delta S^o_{rxn}=\sum [n\times \Delta S^o_f_{(product)}]-\sum [n\times \Delta S^o_f_{(reactant)}]](https://tex.z-dn.net/?f=%5CDelta%20S%5Eo_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20S%5Eo_f_%7B%28product%29%7D%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20S%5Eo_f_%7B%28reactant%29%7D%5D)
The equation for the entropy change of the above reaction is:
![\Delta S^o_{rxn}=[(1\times \Delta S^o_{(SO_2Cl_2(g))})]-[(1\times \Delta S^o_{(SO_2(g))})+(1\times \Delta S^o_{(Cl_2(g))})]](https://tex.z-dn.net/?f=%5CDelta%20S%5Eo_%7Brxn%7D%3D%5B%281%5Ctimes%20%5CDelta%20S%5Eo_%7B%28SO_2Cl_2%28g%29%29%7D%29%5D-%5B%281%5Ctimes%20%5CDelta%20S%5Eo_%7B%28SO_2%28g%29%29%7D%29%2B%281%5Ctimes%20%5CDelta%20S%5Eo_%7B%28Cl_2%28g%29%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![\Delta S^o_{rxn}=[(1\times 311.9)]-[(1\times 248.2)+(1\times 223.0)]=-159.3J/Kmol](https://tex.z-dn.net/?f=%5CDelta%20S%5Eo_%7Brxn%7D%3D%5B%281%5Ctimes%20311.9%29%5D-%5B%281%5Ctimes%20248.2%29%2B%281%5Ctimes%20223.0%29%5D%3D-159.3J%2FKmol)
To calculate the standard Gibbs's free energy of the reaction, we use the equation:

where,
= standard enthalpy change of the reaction =-67200 J/mol
= standard entropy change of the reaction =-159.3 J/Kmol
Temperature of the reaction = 600 K
Putting values in above equation, we get:

Hence, the value of
of the reaction is 28.38 kJ/mol
An electrolyte<span> is a substance that produces an electrically conducting solution when dissolved in a polar solvent, such as water. </span>