1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
d1i1m1o1n [39]
3 years ago
13

Jade uses $30 from her checking account to donate money to her favorite charity. Will this be a deposit or a

Mathematics
2 answers:
Naddika [18.5K]3 years ago
8 0
It would be a withdrawal, because she’s taking money out of her account
Ghella [55]3 years ago
7 0

Answer:

deposit

Step-by-step explanation:

You might be interested in
Helpppppppp pleaseee
In-s [12.5K]

Answer:

Dezias' pensil is 5.11-1.09=4.02 inches long

Paul's pencil is 4.02+2.05=6.07 inches long

Miguel's pencil is 5.11+1.75=6.86 inches long

Combined are 5.11+4.02+6.07+6.86=22.06

The fraction is 22.06/12=1.8383333...

3 0
4 years ago
Find the area of the equilateral triangle when the base is 2.0 cm and the top angle is 50°
nordsb [41]

Answer:

There is an error in the question.

All angles in an equilateral triange are 60º

3 0
3 years ago
Pls help It's so confusing
Genrish500 [490]

9. 9.37, 9.3, 9.219, 9.129

10. 0.101, 0.100, 0.012, 0.001

11. 5.312, 5.231, 5.132, 5.123

12. 62.950, 62.905, 62.833, 62.383

Hope it helps

3 0
3 years ago
Read 2 more answers
PLS HELP I WILL GIVE BRAINLIEST!
zalisa [80]

Answer:

B

Step-by-step explanation:

just go for it

4 0
3 years ago
Read 2 more answers
Please help me to prove this!​
Ymorist [56]

Answer:  see proof below

<u>Step-by-step explanation:</u>

Given: A + B + C = π              → A + B = π - C

                                              → B + C = π - A

                                              → C + A = π - B

                                              → C = π - (B +  C)

Use Sum to Product Identity:  cos A + cos B = 2 cos [(A + B)/2] · cos [(A - B)/2]

Use the Sum/Difference Identity: cos (A - B) = cos A · cos B + sin A · sin B

Use the Double Angle Identity: sin 2A = 2 sin A · cos A

Use the Cofunction Identity: cos (π/2 - A) = sin A

<u>Proof LHS → Middle:</u>

\text{LHS:}\qquad \qquad \cos \bigg(\dfrac{A}{2}\bigg)+\cos \bigg(\dfrac{B}{2}\bigg)+\cos \bigg(\dfrac{C}{2}\bigg)

\text{Sum to Product:}\qquad 2\cos \bigg(\dfrac{\frac{A}{2}+\frac{B}{2}}{2}\bigg)\cdot \cos \bigg(\dfrac{\frac{A}{2}-\frac{B}{2}}{2}\bigg)+\cos \bigg(\dfrac{C}{2}\bigg)\\\\\\.\qquad \qquad \qquad \qquad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{C}{2}\bigg)

\text{Given:}\qquad \quad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{\pi -(A+B)}{2}\bigg)

\text{Sum/Difference:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\sin \bigg(\dfrac{A+B}{2}\bigg)

\text{Double Angle:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\sin \bigg(\dfrac{2(A+B)}{2(2)}\bigg)\\\\\\.\qquad \qquad  \qquad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+2\sin \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A+B}{4}\bigg)

\text{Factor:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\bigg[ \cos \bigg(\dfrac{A-B}{4}\bigg)+\sin \bigg(\dfrac{A+B}{4}\bigg)\bigg]

\text{Cofunction:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\bigg[ \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{\pi}{2}-\dfrac{A+B}{4}\bigg)\bigg]\\\\\\.\qquad \qquad \qquad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{2\pi-(A+B)}{4}\bigg)\bigg]

\text{Sum to Product:}\ 2\cos \bigg(\dfrac{A+B}{4}\bigg)\bigg[2 \cos \bigg(\dfrac{2\pi-2B}{2\cdot 4}\bigg)\cdot \cos \bigg(\dfrac{2A-2\pi}{2\cdot 4}\bigg)\bigg]\\\\\\.\qquad \qquad \qquad =4\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -A}{4}\bigg)

\text{Given:}\qquad \qquad 4\cos \bigg(\dfrac{\pi -C}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -A}{4}\bigg)\\\\\\.\qquad \qquad \qquad =4\cos \bigg(\dfrac{\pi -A}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -C}{4}\bigg)

LHS = Middle \checkmark

<u>Proof Middle → RHS:</u>

\text{Middle:}\qquad 4\cos \bigg(\dfrac{\pi -A}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -C}{4}\bigg)\\\\\\\text{Given:}\qquad \qquad 4\cos \bigg(\dfrac{B+C}{4}\bigg)\cdot \cos \bigg(\dfrac{C+A}{4}\bigg)\cdot \cos \bigg(\dfrac{A+B}{4}\bigg)\\\\\\.\qquad \qquad \qquad =4\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{B+C}{4}\bigg)\cdot \cos \bigg(\dfrac{C+A}{4}\bigg)

Middle = RHS \checkmark

3 0
3 years ago
Other questions:
  • a restaurant owner bought 4 boxes of disposable cups for $145 , with each box containing 1,656 cups. if he wanted to divvy up th
    8·1 answer
  • what is the distance around a triangle that has sides measuring 2 and one eight feet , 3 one half feet, and 2 one half feet?
    14·1 answer
  • If 6 is added to a number the resultus 8 less than 3 times the number find the number
    6·1 answer
  • How do u do 6x32 and 7x29 using distribuative property to solve
    7·2 answers
  • What does −|−9| mean
    8·1 answer
  • WHAT TWO NUMBERS MULTIPLY TO 27<br><br> WHAT TWO NUMBERS MULTIPLY TO 18
    9·2 answers
  • Rewrite the expression 4×12 two different ways to show the distributive property over both addition and subtraction
    11·1 answer
  • Write an equation of the perpendicular bisector of the segment with endpoints M(10,-7) and N(-4,1).​
    12·1 answer
  • which of the points (s,t) is inside the shaded region of the set of inequalities qualities shown below?
    12·1 answer
  • . (04.07A) A line passes through (4, 5) and (8, 9). Which equation best represents the line? (4 points) y = 2x + 1 y = 1 y = 5x
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!