1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sertanlavr [38]
3 years ago
14

Give that y=-4,x=3,b=7 & c=2 find b^c​

Mathematics
2 answers:
disa [49]3 years ago
7 0

Answer:

49

Step-by-step explanation:

b^c

Let b = 7 and c = 2

7^2

7*7 = 49

pishuonlain [190]3 years ago
5 0

Answer:

49

Step-by-step explanation:

you fill in the equation so that it's 7^2. which is 7*7. this equals 49

You might be interested in
The initial population of a town is 3500 people and it grows with a doubling time of 10 years. What will the population be in 8
astraxan [27]
The answer would be 2,800 people eight years after original population
4 0
3 years ago
Solve for x. 8/x-7=7/2
zloy xaker [14]
X= 9 2/7 ( the first answer is correct )
6 0
3 years ago
Read 2 more answers
Write 314,207 in expanded form
Otrada [13]
314,207                                                                                        300,000+10,000+4,000+200+7 
i hope it work

3 0
3 years ago
Read 2 more answers
Question 3 of 10
mestny [16]

Answer:

㋡

Check Answer

♣ Qᴜᴇꜱᴛɪᴏɴ :

If tan θ = \sf{\dfrac{1}{\sqrt{7}}}

7

1

, Show that \sf{\dfrac{cosec ^2 \theta - sec ^2\theta}{cosec^2\theta + sec^2\theta }=\dfrac{3}{4}}

cosec

2

θ+sec

2

θ

cosec

2

θ−sec

2

θ

=

4

3

★═════════════════★

♣ ᴀɴꜱᴡᴇʀ :

We know :

\large\boxed{\sf{tan\theta=\dfrac{Height}{Base}}}

tanθ=

Base

Height

So comparing this formula and value of tan θ from question, we get :

Height = 1

Base = √7

Now we need to Prove the value of : \sf{\dfrac{cosec ^2 \theta - sec ^2\theta}{cosec^2\theta + sec^2\theta }=\dfrac{3}{4}}

cosec

2

θ+sec

2

θ

cosec

2

θ−sec

2

θ

=

4

3

Also :

\large\boxed{\sf{cosec\theta=\dfrac{Hypotenuse}{Height}}}

cosecθ=

Height

Hypotenuse

\large\boxed{\sf{sec\theta=\dfrac{Hypotenuse}{Base}}}

secθ=

Base

Hypotenuse

From this we get :

\large\boxed{\sf{cosec^2\theta=\left(\dfrac{Hypotenuse}{Height}\right)^2}}

cosec

2

θ=(

Height

Hypotenuse

)

2

\large\boxed{\sf{sec^2\theta=\left(\dfrac{Hypotenuse}{Base}\right)^2}}

sec

2

θ=(

Base

Hypotenuse

)

2

But we have Height and Base, we dont have Hypotenuse.

Hypotenuse can be found by using Pythagoras Theorem

Pythagoras Theorem states that :

Hypotenuse² = Side² + Side²

For our question :

Hypotenuse² = Height² + Base²

Hypotenuse² = 1² + √7²

Hypotenuse² = 1 + 7

Hypotenuse² = 8

√Hypotenuse² = √8

Hypotenuse = √8

➢ Let's find value's of cosec²θ and sec²θ

________________________________________

First cosec²θ :

\large\boxed{\sf{cosec^2\theta=\left(\dfrac{Hypotenuse}{Height}\right)^2}}

cosec

2

θ=(

Height

Hypotenuse

)

2

\sf{cosec^2\theta=\left(\dfrac{\sqrt{8}}{1}\right)^2}cosec

2

θ=(

1

8

)

2

\sf{cosec^2\theta=\dfrac{8}{1}}cosec

2

θ=

1

8

cosec²θ = 8

________________________________________

Now sec²θ :

\large\boxed{\sf{sec^2\theta=\left(\dfrac{Hypotenuse}{Base}\right)^2}}

sec

2

θ=(

Base

Hypotenuse

)

2

\sf{sec^2\theta=\left(\dfrac{\sqrt{8}}{\sqrt{7}}\right)^2}sec

2

θ=(

7

8

)

2

\sf{sec^2\theta=\dfrac{8}{7}}sec

2

θ=

7

8

sec²θ = 8/7

________________________________________

Now Proving :

\sf{\dfrac{cosec ^2 \theta - sec ^2\theta}{cosec^2\theta + sec^2\theta }=\dfrac{3}{4}}

cosec

2

θ+sec

2

θ

cosec

2

θ−sec

2

θ

=

4

3

Taking L.H.S :

\sf{\dfrac{cosec ^2 \theta - sec ^2\theta}{cosec^2\theta + sec^2\theta }}

cosec

2

θ+sec

2

θ

cosec

2

θ−sec

2

θ

=\sf{\dfrac{8 - sec ^2\theta}{8 + sec^2\theta }}=

8+sec

2

θ

8−sec

2

θ

=\sf{\dfrac{8 - \dfrac{8}{7}}{8 + \dfrac{8}{7} }}=

8+

7

8

8−

7

8

=\sf{\dfrac{\dfrac{48}{7}}{\dfrac{64}{7} }}=

7

64

7

48

\sf{=\dfrac{48\times \:7}{7\times \:64}}=

7×64

48×7

\sf{=\dfrac{48}{64}}=

64

48

\bf{=\dfrac{3}{4}}=

4

3

= R.H.S

Hence Proved !!!

7 0
3 years ago
4+3(15-2^(3)) Simplify the equation....
miskamm [114]

Answer:

<h2>25</h2>

Step-by-step explanation:

4+3\left(15-2^3\right)\\\\3\left(15-2^3\right)=21\\\\=4+21\\\\=25

6 0
3 years ago
Read 2 more answers
Other questions:
  • 2x+34=4(x+5) ....solve x
    9·2 answers
  • Find the solution of this system of equations -x-4y=37 -2x-4y=-53
    7·2 answers
  • How to solve 7r^2-41r-6=0 basics step by step
    14·2 answers
  • The length and width of a rectangle are 4 feet and 3 feet, respectively. A similar rectangle has a length of 10 feet. What is th
    8·1 answer
  • Solve for x <br>quick please need it done fast​
    12·2 answers
  • Alex biked 6 ¼ miles on Friday, 7 ⅞ miles on Saturday, and 7 ⅛ miles on Sunday. What was the total distance Alex biked?
    10·1 answer
  • What is 508.93 rounded to the nearest tenth
    13·2 answers
  • Let f(x)= 5x-9 and g(x)=x+4 find f(g(x) and g (f(x)
    12·1 answer
  • Answer or you will get 0 doritos
    8·2 answers
  • I really need help plz!!!!
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!